Constraining the total baryon number of the universe with XMM-Newton high resolution spectra

Daniel Nieto Castaño ESAC

Where are the missing baryons?

How our friend XMM-Newton can help us to find them

Universe Composition

- Dark Energy 70%
- Dark Matter
 25%
- Ordinary Matter
 5%

Ordinary Matter

- Hadrons (suffer electroweak and strong interactions)
 - Baryons (fermions)
 - Composed by three quarks
 - Proton, neutron
 - Mesons (bosons)
 - Composed by one quark and one antiquark
 - Unstable
- Leptons (suffer electroweak interaction)
 - "Leptos" = light
 - Electron, muon, tauon and neutrinos

Baryons appear in the past and hide in the present

- High Redshift z : baryon number OK
- Low Redshift z: 45 % missing

Table 1 Census of baryons in the high-and low-redshift Universe					
Inferred from	$arOmega_{ m b}$ (%) for $h_{70}=1$				
BBN + D/H*	(4.4 ± 0.4)				
CMB anisotropy	(4.6 ± 0.2)				
Observed at $z > 2$ in†					
Lyman-α forest	>3.5				
Observed at z < 2 in‡					
Stars	(0.26 ± 0.08)				
$H_1 + He_1 + H_2$	(0.080 ± 0.016)				
X-ray gas in clusters	(0.21 ± 0.06)				
Lyman-α forest	(1.34 ± 0.23)				
Warm + warm-hot Ovi	$(0.6^{+0.4}_{-0.3})$				
Total (at <i>z</i> < 2)§	$(2.5^{+0.5}_{-0.4})$				
Missing baryons (at <i>z</i> < 2)§	(2.1 ^{+0.5} _{-0.4})				

Cosmological Simulations

Cosmological Simulations

How can we detect WHIM?

- Baryon Matter: Ionized Atoms
 H-like
 - He-like
- High resolution soft X-ray absorption spectroscopy:
 - RGS (XMM-Newton)
- X-ray Transitions:
 - Candidate: O
 - O VII $(1s^2 {}^{1}S_0 1s2p {}^{1}P_1)$
 - 21.602 Å
 - O VIII (1s-2p)
 - 18.969 Å

Reflecting Grating Spectrometer (RGS)

- Two RGS on board XMM-Newton
- High resolution soft X-ray spectroscopy:
 - High resolving power (150 to 800)
 - Range from 5 to 35 Å
 [0.33 to 2.5 keV]
- X-ray Transitions within the range
 - Heavy elements
 - L-shell
 - Light elements
 - K-shell transitions
 - He-like triplets

Bright Extragalactic Continuum Sources Candidates

Mkn 421

z = 0.03

Pks 2155-304

z = 0.117

dhie to 27- Mar- 2006 13:58

dhieto 28: Apr- 2006 10:55

data and folded model

Best fit parameter	s (powerlaw an	d broken powerlaw) with system	atic error (3%) and fixe	d column den	sity (nH=1.611*1(
RGS	α1	E _b (Ke V)	α2	F _{1.KeV} (γ KeV ⁻¹ cm ⁻²	χ²	d.o.f.
136540301						
1	1.97			0.16	4.62	126
1	1.72	0.75	2.66	0.20	11.18	131
2	2.11			0.14	8.88	119
2	1.72	0.75	2.66	0.18	1.45	117
136540401						
1	1.91			0.20	4.83	138
1	1.55	0.68	2.20	0.25	1.04	136
2	1.91			0.19	4.15	148
2	1.55	0.68	2.20	0.24	4.52	146
136541001						
1	1.89			0.12	3.54	240
1	1.60	0.69	2.14	0.14	0.92	239
2	1.92			0.11	2.84	264
2	1.60	0.69	2.14	0.14	3.78	273
158970101						
1	1.99			0.12	5.57	125
1	1.80	0.73	2.39	0.14	5.72	130
2	2.06			0.11	3.96	131
2	1.80	0.73	2.39	0.13	1.002	129
150498701						
1	1.76			0.30	4.71	435
1	1.52	0.72	2.07	0.34	4.22	457
2	1.79			0.28	3.78	492
2	1.52	0.72	2.07	0.34	1.11	490
Best fitted obs	š.					

Fit with a change o parameters from best fitted obs.

Conclusion

Next Steps

• No evidence of filaments for the moment

- Focusing in Pks 2155-304 data
- Taking advantage of new SAS version

 Improved Rgsproc
- Developing tools to merge spectra from different observations