

<u>Gallery of selected galactic</u> <u>supernova remnants</u>

E. Sánchez Bautista

esanchez@sciops.esa.int

European Space Astronomy Centre Villafranca, Madrid, Spain July 2nd, 2010

- Make an extended source analysis.
- How to treat the background for extended sources in a correct way.
- Make a background correction using blank sky field event files.
- Investigate the difference between the different blank sky fields.
- Create images and spectrums of SNR.

1. Introduction

2. Background components

3. Blank Sky Fields

4. Results

5. Conclusions and next steps

1. Introduction

- **2.** Background components
- **3.** Blank Sky Fields
- **4.** Results
- **5.** Conclusions and next steps

X-ray Multi-mirror Mission - Newton

EPIC instrument:

European Photon Imaging Camera

Hardware features:

- Three independent CCD-cameras (two MOS & one PN), observing simultaneously the same field.
- Three different light filters
- Different observation modes

1. Introduction

2. Background components

3. Blank Sky Fields

4. Results

5. Conclusions and next steps

Background components:

Astrophysical background

- Photons:
 - Cosmic X-ray background
 - Soft proton "flares"
 - Solar wind charge exchange
- Particles:
 - High energy penetrating (Cosmic Rays) hitting directly the CCD

Detector background

- Low energy electronic noise
- Time dependence: detector degrading in space
- Possition dependence:
 - Fluorescent emission lines: strong metal line features (Cu) make background subtraction complex especially for extended sources.

Enrique Sánchez, XMM-Newton Group

European Space Astronomy Centre Page 9

More information about background components and their temporal, spectral, spatial properties are summarized at

http://www.star.le.ac.uk/~amr30/BG/BGTable.html

Background components:

Possition background dependence because of the electronics of the CCD's

Background components:

Extracting backgrounds (point sources):

Source: Galaxy Cluster A1795 (full frame mode) – XMM Newton

We can extract the background value from the free electronics region of the detector

Extracting backgrounds (extended sources):

Source: Galaxy Cluster A1795 (full frame mode) – XMM Newton

EPIC pn : Cu–Ka [7.8–8.2 keV]

We see the Cu fluorescence line (an others) in the spectrum Problem: The source exceeds the "free electronics" region of the detector

ESAC Trainee Summer Alumni Meeting, July 2nd, 2010

Extracting backgrounds (extended sources):

Source: Galaxy Cluster A1795 (full frame mode) - XMM Newton

Solutions? One of them is to use the Blank Sky Fields

Introduction Background components Blank Sky Fields Results Conclusions and next steps

Blank Sky Fields:

Blank Sky Background Event Files

Developed and maintain at Leicester Univ. by the EPIC Blank Sky team based on the work of J. Carter and A. Read (A&A 464, p1155, 2007).

- All the point sources have been removed
- Sky regions free of sources created

Two different analysis made:

- → Time based sky field: The detector is degrading with time
- → Position based sky field:

The sky background is not uniform

Each Blank Sky file is constructed from several different event files

Source: Galaxy Cluster A1795 (full frame mode) – XMM Newton

Galaxy cluster A1795

Why?

- High temperature object
- Its spectrum has a more fluxed high energies
- The strongest background feature is Cu flourescence line (~8 keV)

Source: Galaxy Cluster A1795 (full frame mode) – XMM Newton

Galaxy cluster A1795

Three background corrections compared:

- 1. Background spectrum (*local bkg*)
- 2. Background spectrum from BlankSky field 1 (*Position based*)
- 3. Background spectrum from the BlankSky field 2 (*Time based*)

Source: Galaxy Cluster A1795 (full frame mode) – XMM Newton

Galaxy cluster A1795

Three background corrections compared:

- 1. Background spectrum (*local bkg*)
- 2. Background spectrum from BlankSky field 1 (*Position based*)
- 3. Background spectrum from the BlankSky field 2 (*Time based*)

...applied in two regions:

- Full cluster region

Source: Galaxy Cluster A1795 (full frame mode) – XMM Newton

Galaxy cluster A1795

Three background corrections compared:

- 1. Background spectrum (*local bkg*)
- 2. Background spectrum from BlankSky field 1 (*Position based*)
- 3. Background spectrum from the BlankSky field 2 (*Time based*)

...applied in two regions:

- Full cluster region
- Annular region

Introduction Background components Blank Sky Fields Results Conclusions and next steps

Galaxy cluster A1795

ESAC Trainee Summer Alumni Meeting, July 2nd, 2010

Galaxy cluster A1795

Background corrections applied?

- 1. Bkg spectrum (*local bkg*)
- 2. Bkg spectrum from BlankSky field 1 (*Position based*)

Regions:

- Full cluster region

Galaxy cluster A1795

ESAC Trainee Summer Alumni Meeting, July 2nd, 2010

Background corrections applied?

- 1. Bkg spectrum (*local bkg*)
- 2. Bkg spectrum from BlankSky field 1 (*Position based*)
- 3. Bkg spectrum from BlankSky field 2 (*Time based*)

Regions:

- Full cluster region

Galaxy cluster A1795

Background corrections applied?

- 1. Bkg spectrum (*local bkg*)
- 2. Bkg spectrum from BlankSky field 1 (*Position based*)
- 3. Bkg spectrum from BlankSky field 2 (*Time based*)

Regions:

- Full cluster region

Galaxy cluster A1795

Galaxy cluster A1795

Galaxy cluster A1795

Background corrections applied?

- 1. Bkg spectrum (*local bkg*)
- 2. Bkg spectrum from BlankSky field 1 (*Position based*)
- 3. Bkg spectrum from BlankSky field 2 (*Time based*)

Regions:

- Annular region

<u>Results:</u>

Galaxy cluster A1795

Background corrections applied?

- 1. Bkg spectrum (*local bkg*)
- 2. Bkg spectrum from BlankSky field 1 (*Position based*)
- 3. Bkg spectrum from BlankSky field 2 (*Time based*)

Regions:

- Annular region

Introduction Background components Blank Sky Fields Results

5. Conclusions and next steps

Conclusions:

- Results for the full galaxy cluster are as we expected:
 - Background features disapeared.
 - No significant difference between the two blank sky fields.
 - As SNR analysis is equivalent, applying blank sky field backgrounds is succesful.
- However, for the annular region using blank sky fields there still remain background issues.
 - We don't know yet why.

Next steps:

- Create an spectra of SNR using this process: blank sky background correction.
- Create image gallery of galactic SNR.

Tycho SNR - XMM Newton EPIC MOS

Thanks to:

Martin Stuhlinger, I. de la Calle and Deborah Baines and my trainee mates.

Questions please...

What is a CCD?

- Charge Coupled Device
- You know that from your digital cam or mobile phone
 - our CCDs however work also for X X-ray photons
- Silicon device to measure photons energy, position and time

Additional material (2):

PN operating modes

Additional material (3):

MOS operating modes

Full Frame Time Res.: 2.6 s Large Window Time Res: 0.9 s central CCD 2.7 s outer CCDs Small Window Time Res.: 0.3 s central CCD 2.7 s outer CCDs Time res. : 1.8 ms central CCD 2.6 s outer CCDs

Summary of modes properties

Table 3: Basic numbers for the science modes of EPIC				
MOS (central CCD; pixels) [1 pixel = 1.1"]	Time resolution	Live time ' [%]	Max. count rate ² diffuse ³ (total) [s ⁻¹]	Max. count rate [°] (flux) point source [s ⁻¹] ([mCrab]°)
Full frame (600 × 600)	2.6 s	100.0	150	0.70 (0.24)
Large window (300 × 300)	0.9 s	99.5	110	1.8 (0.6)
Small window (100 × 100)	0.3 s	97.5	37	5 (1.7)
Timing uncompressed (100 × 600)	1.75 ms	100.0	N/A	100 (35)
pn (array or 1 CCD; pixels) [1 pixel = 4.1"]	Time resolution	Live time' [%]	Max. count rate ² diffuse ³ (total) [s ⁻¹]	Max. count rate ² (flux) point source [s ⁻¹] ([mCrab]*)
Full frame' (376×384)	73.4 ms	99.9	1000(total)	6 (0.7)
Extended full frame ^{8,6} (376×384)	199.1 ms	100.0	370	2 (0.25)
Large window (198×384)	47.7 ms	94.9	1500	10 (1.1)
Small window (63×64)	5.7 ms	71.0	12000	100 (11)
Timing (64 × 200)	0.03 ms	99.5	N/A	800 (85)
Burst (64 × 180)	7 µs	3.0	N/A	60000 (6300)

This table is extracted from the source of any wisdom as far as XMM-Newton instruments are concerned: the XMM-Newton Users Handbook:

http://xmm.esac.esa.int/external/xmm_user_support/documentation/uhb/index.html

