Multi-wavelength analysis of Active Galactic Nuclei

Nuria Fonseca Bonilla
Matteo Guainazzi
Stefano Bianchi
OUTLINE

- Introduction to AGN: characteristics ↔ multi-wavelength analysis
- Projects: description & results
 - XMM-Newton catalogue of radio-quiet AGN
 - Classification of an individual source: Spectral Energy Distribution (SED)
- Conclusions
- Further analysis

Multi-wavelength analysis of AGN

1/15
INTRODUCTION

a few galaxies present non stellar emission in inner regions extreme luminosities: $L \sim 10^{42} - 10^{46}$ erg s$^{-1}$

• luminosity comes from a compact region: SUPERMASSIVE BLACK HOLE (SMBH)
• energy is produced by accretion: ACCRETION DISK

CHARACTERISTICS

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
INTRODUCTION

Emissions

Jet → Radio emission

Accretion disk

Torus (dust)

Optical / UV emission

IR emission

X-ray emission

Comptonization
INTRODUCTION

MULTI-WAVELENGTH ANALYSIS

- Useful to understand the physics of AGN ⇒ better knowledge of their properties
- Examples:
 - Study of possible correlations in different bands with data from the XMM-Newton catalogue of radio quiet AGN
 - Study of the Spectral Energy Distribution (SED) of an individual source
XMM-NEWTON CATALOGUE OF RADIO QUIET AGN

- **X-ray**: 157 unobscured AGN targeted by XMM-Newton
 - Luminosities in both bands:
 - Soft: 0.5-2 keV
 - Hard: 2-10 keV
 - Main spectral properties (Fe line, spectral index...)

- **Optical**:
 - M_{ABS} to distinguish between:
 - Quasars: $M_{\text{ABS}} < -23$
 - Seyfert: $M_{\text{ABS}} > -23$
 - BH masses
 - Hβ FWHM to classify sources:
 - Narrow line: < 2000 km/s
 - Broad line: > 2000 km/s

- **Radio**: Flux in 6 cm (5GHz) and 20 cm (1.4GHz)

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
XMM-NEWTON CATALOGUE: DATA

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire catalogue</td>
<td>157 sources</td>
</tr>
<tr>
<td>Seyfert</td>
<td>79</td>
</tr>
<tr>
<td>Quasars</td>
<td>78</td>
</tr>
<tr>
<td>BL objects</td>
<td>64</td>
</tr>
<tr>
<td>NL objects</td>
<td>38</td>
</tr>
<tr>
<td>(M_{\text{ABS}})</td>
<td></td>
</tr>
<tr>
<td>(M_{\text{BH}})</td>
<td></td>
</tr>
<tr>
<td>Radio flux</td>
<td></td>
</tr>
<tr>
<td>6cm</td>
<td>89</td>
</tr>
<tr>
<td>20cm</td>
<td>117 (29 upper limits)</td>
</tr>
</tbody>
</table>

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
PROJECT 1: RESULTS

XMM-NEWTON CATALOGUE: IWASAWA-TANIGUCHI EFFECT

Highly significant anticorrelation!!

\[\text{covering fraction of torus} \Rightarrow \text{opening angle of torus} \Rightarrow \text{L}_{\text{hard}} \]
\[\Rightarrow \text{ionization} \Rightarrow \text{EW of neutral Fe line} \]

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
Weaker anticorrelation with the Eddington luminosity and M_{BH} mass than with X-ray luminosity (L_{hard})

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
XMM-NEWTON CATALOGUE: X-ray luminosity ratio vs Hβ FWHM

\[\log\left(\frac{L_{0.5-2}}{L_{2-10}}\right) = (0.14 \pm 0.03) + (-0.60 \pm 0.08) \log(H\beta_{FWHM,2000}) \]

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
PROJECT 1: RESULTS

XMM-NEWTON CATALOGUE: X-ray luminosity ratio vs Hβ FWHM

\[\log\left(\frac{L_{3.5}}{L_{2.16}}\right) = (0.14 \pm 0.03) + (-0.60 \pm 0.08) \log(\text{Hβ FWHM, 2000}) \]

E ↓ → soft X-ray

NL objects

Multi-wavelength analysis of AGN
XMM-NEWTON CATALOGUE: X-ray luminosity ratio vs Hβ FWHM

\[
\log \left(\frac{L_{0.5}}{L_{2-10}} \right) = (0.14 \pm 0.03) + (0.60 \pm 0.08) \log (H\beta \text{ FWHM})
\]

BL objects

E ↑ → hard X-ray

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
CLASSIFICATION OF AN INDIVIDUAL AGN

SOURCE: XMMU J002200.8+000655

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
CLASSIFICATION OF XMMU J002200.8+000655: spectrum

- Spectrum of the EPIC cameras: MOS 1 and 2, PN
- Simultaneous fitting of the three spectra

![Simultaneous fit](image-url)
CLASSIFICATION OF XMMU J002200.8+000655: spectrum

<table>
<thead>
<tr>
<th>model</th>
<th>N_H [10^{20}cm^{-2}]</th>
<th>Γ</th>
<th>N [10^{-4}]</th>
<th>E_X [keV]</th>
<th>L_X [$10^{-5}\text{phcm}^{-2}\text{s}^{-1}$]</th>
<th>EW [eV]</th>
<th>Red_{χ^2}/ d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>po+zga</td>
<td>$4.69^{+1.53}_{-1.56}$</td>
<td>$2.29^{+0.049}_{-0.065}$</td>
<td>$7.43^{+0.44}_{-0.44}$</td>
<td>6.4</td>
<td><4.60</td>
<td><428</td>
<td>1.002/350</td>
</tr>
</tbody>
</table>

![Simultaneous fit](image)
PROJECT 2: RESULTS

CLASSIFICATION OF XMMU J002200.8+000655: SED

More data needed to fill the SED

X-ray band
0.5-10keV

Radio band
1 point: 1.4GHz

Multi-wavelength analysis of AGN

Nuria.Fonseca@sciops.esa.int
CLASSIFICATION OF XMMU J002200.8+000655: SED

It seems to be a radio-quiet source.
CONCLUSIONS

1. XMM-Newton catalogue of radio-quiet AGN
 • IT effect: anticorrelation between EW Fe and L_{hard}, M_{BH} and $L_{\text{BOL}}/L_{\text{Edd}}$
 (more details in Bianchi et al. 2007)
 • Anticorrelation between the X-ray luminosity ratio and H\textbeta FWHM

2. Classification of XMMU J002200.8+000655
 • The source seems to be a radio quiet AGN
1. XMM-Newton catalogue of radio-quiet AGN
 - IT effect: more details in Bianchi et al. 2007
 - Entire catalogue is nearly to be published

2. Classification of XMMU J002200.8+000655
 - More data needed in radio and other bands to fill the SED
 - Comparison with standard SED in order to classify the source
Thanks a lot for your attention!!