POISSON STATISTICS PROJECT

ALICIA MARTINEZ GONZALEZ ANDY POLLOCK

OVERVIEW

OBJECTIVE:
 IMPROVE THE GOODNESS-OF-FIT WHEN THERE ARE FEW OR NO COUNTS PER BIN

Why IS -tJJ prso ject Necessarpy?
IJJPRODUCTION AND POISSON EXAMPLES
K-SQUARED AND C-STATISTIC
WHATI HAPPENS WHEN WE HAVE A FEW COUNTS PER BIN?
MなAな MIE NEED? HOW TO GET IT?
NEW: "A"-STATISTIC/GOODNESS-OF-FIT FOR C-STATISTIC XSPEC USES SIMULATIONS, SO WHY DON'T WE?

- CONCIUSIONS AND FUTURE STEPS

Starting situations

Valiclation of physically model fit to spectra in X-ray astironomy evaluatie general techniques to estimate parameters where the correct functional form is known but the parameters are not known Decide with statiistical analysis if the model is tirue Use and test with XMM-Newton data

Possion distribution

คOJラシロ』 ExAMMPLES
tyo examples of the Poisson distribution with diffferent （mean 0．02，1．0）

$$
P(X=x)=\frac{e^{-\mu} \mu^{x}}{x!}
$$

In our data there are a lot of bins with 0 counts
－－＞mean－－＞ 0
－－＞perfectly good data value

Poisson（1）

statistical evaluarijos

DISTRUBUTION

$$
\begin{aligned}
& \text { X-SQUARED } \\
& S=\prod_{i=1}^{N}\left(n_{j}-e_{i}\right)^{2} \\
& e_{i}
\end{aligned}
$$

C-STATISTIC

$$
C=2 \prod_{i=1}^{N}\left(e_{\rho}-n_{i} \ln e_{i}\right)
$$

$n_{i}=$ Observed counts in bin i $\quad e_{i}=$ expected number

DIFFErx Ences Bethyetn x－souared And C－ S「A゙ないう「」C

X－squared
It comes from a Gaussian distribution
Gaussian errors of individual data points
Independence of data points
－Doesn＇t always work
－how many counts per bin are enough？
Nor＇beri Schariel：
5 for centiral bins and 4 for first and
－C－statistic
－It comes from a Poisson distribution
Poisson errors of individual data points
－always works
－how many counts per bin are enough？？？
Norbert Schartel：allways Webster Cash says 9 Andy Pollock salys 1

WHY IS ThIJ PROJECTNECESSAATY?
Mrfir firppens when werflye f rew or no counts「Er, BN?

All statistical proofs and theorems are valich for highn rulirnigers of counts only

X-squared minimization criterion is very bad if any of the observed data bins have few counts
There are tests in both cases to check if there are enough counts per bin: In out case: not enough counts!!!

- W. Cash: C is a better criterion to use a likelihood function based on Poisson statistics. It usually yields tighter error boxes than does chi2 but never the opposite! But no prove!

Exalusple:

rass fluxed spectrum of the star zeta ori

Model fits to clelis

Comparison of high-resolution X-ray data with the best-fit model

--> emission-line velocity parameters

TriLine velocities		
blueV	-1642 ± 22	$\mathrm{~km} \mathrm{~s}^{-1}$
centralV	-302 ± 29	$\mathrm{~km} \mathrm{~s}^{-1}$
redV	$+1646 \pm 26$	$\mathrm{~km} \mathrm{~s}^{-1}$
bremsstrahlung continuum		
N_{H}	2.5×10^{20}	$\mathrm{~cm}^{-2}$
$k T$	0.494 ± 0.007	keV^{2}
normalisation	$5.66 \pm 0.14 \times 10^{-3}$	
C-statistic $=22862.4$ using 26281 PHA bins		

What does the value of C means?

WHAT WE NJEED?: Solution -]

NEW "A"-STATISTIC

reequirements:
The statistics only depends on the data

$$
A(x 1, x 2, \ldots, x n)
$$

- should work in our case (few counts per bin)
- independent of errors between data points
- easy to use and to program
- need a new test for this statistics

WHAT WE NEED? SOUUTiOS 2
\rightarrow Denive GOODNESS-OF-FIT FOR C-STATIITTIC for few counsis per bin

What does the value of C-statistic means?
How to decide objectively when there are enough counts per bin?

Improve xspec

- xspec uses a fitting algorithm to find the best-fit values of model parameters', but usually it finds a local minimum!
- Understand when and how xspec uses simulation

CONCLUSIONS AND FUTVFE STEPS

Poisson statistics is always applicable
Xspec sometimes cloes not fincl global rsiinilisuluss
Golden Recipe of the staijstical anajlyこis does not exisit

Ev=1ulare C-statistic test in detail
inns an algorithm that gives us a global minimum for the best fil parameters
If no satisfactory test for C-statistic can be found develop
"A"-statistic

