Traineeship – Summer 2009

Maël GUIHENEUF

Fry 2nd June 2010

Advisors: Frédéric Schmidt Albrecht Schmidt

Deployment of BPSS algorithm (Bayesian positive Source Separation) on Matlab

Mars Express

What have I done?

Profiling Optimizations Deployment

Why this project?

The algorithm - BPSS

OMEGA

The projet

.....

Use cases / Issues

Input data The algorithm Interpretation of the results

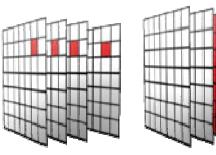
Why this project?

Mars Express – OMEGA

The projet **OMEGA** The projet The algorithm development Profiling **Optimizations** Deployment Issues Datas Algorithm Results Conclusion

OMEGA = Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité

spectro-imager onboard Mars Express



Spectral

Spatial

Channel V : 0.38 \rightarrow 1.05 µm Channel C : 0.93 \rightarrow 2.73 µm Channel L : 2.55 \rightarrow 5.1 µm

256 wavelengths

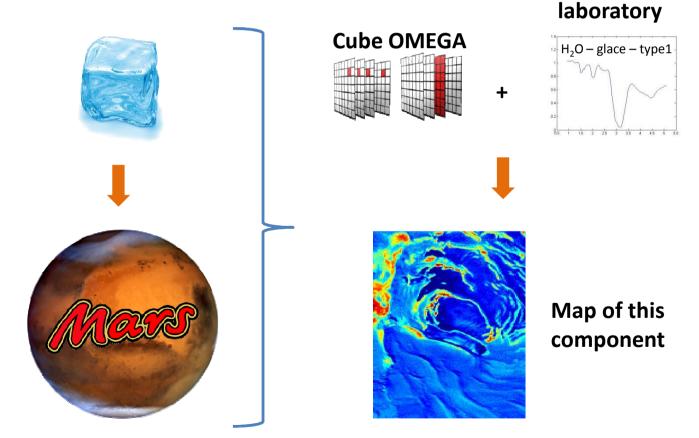
Resolution : 350 m → 4 km Image : 128 x 800 pixels (> 100 000 px)

Why this project?

Supervised methods

Goal \rightarrow to study components on the surface

1. Supervized methods :

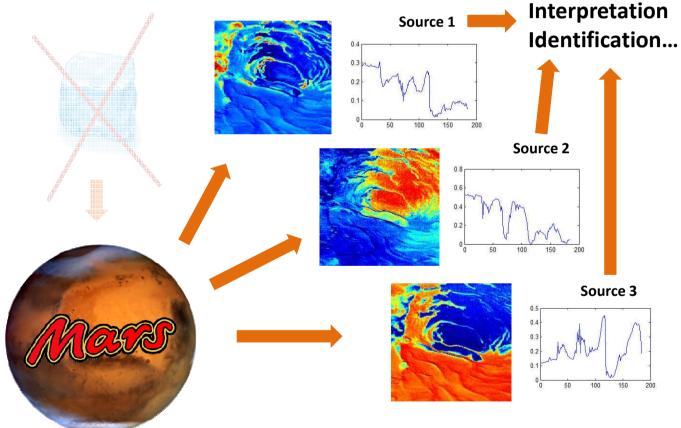


Why this project?

Blind methods

Goal \rightarrow to study components on the surface

2. Blind methods :



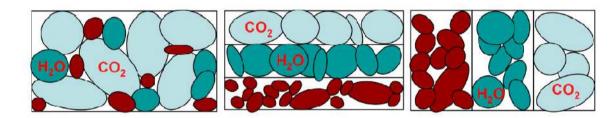
Why this project?

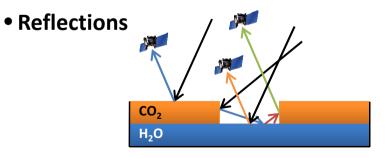
Limitations in those methods

Sources of error:

The reflectance of the surface depends on a lot of factories

- For a single component → different granulations
- Mixes of componants



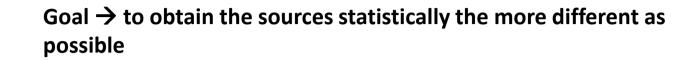


 \rightarrow Many spectrum possibilities

+ Unexpected components

Why this project?

Choice of this algorithm



Classic methods \rightarrow we don't impose the non-negativity of sources

IC 1

3

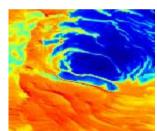
The projet OMEGA The projet The algorithm

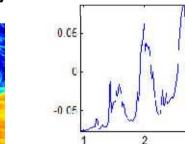
development Profiling Optimizations Deployment Issues

> Datas Algorithm Results

Conclusion

Exemple: (JADE)





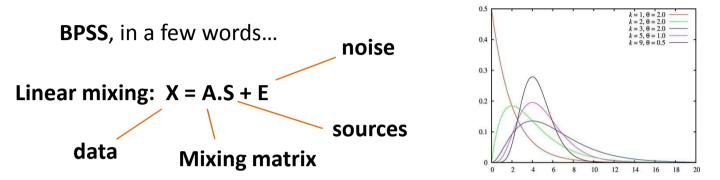
→ Negative spectrum No physic No credibility No relevant

Our choice: BPSS (Bayesian Positive Source Separation)

Why this project?

Presentation of the algorithm

The projet **OMEGA** The projet The algorithm development Profiling **Optimizations** Deployment Issues Datas Algorithm Results Conclusion



 \rightarrow Estimate : P(A,S | X) α P(X | A,S) . P(A) . P(S)

Positivity: each matrix element follows a **Gamma distribution** (2 hyper parameters : $\theta = [\alpha, \beta]$)

→ Estimate : $P(A,S,\theta \mid X) \propto P(X \mid A,S,\theta) \cdot P(A) \cdot P(S) \cdot P(\theta)$

Using of **Gibbs Sampler** = calculate itratively $P(x_i)$ using only the multivariate conditional distribution $P(x_i | x_0, ..., x_{i-1}, x_{i+1}, ..., x_N)$

For us: $S^{(r+1)}$ generated randomly using $P(S^{(r)} | X, A^{(r)}, \theta^{(r)})$ $A^{(r+1)}$ generated randomly using $P(A^{(r)} | X, S^{(r+1)}, \theta^{(r)})$ $\theta^{(r+1)}$ generated randomly using $P(A^{(r)} | X, A^{(r+1)}, S^{(r+1)})$

Variant : BPSS2 \rightarrow constraint of $\Sigma = 1$

Why this project?

Limitations on previous code

Memory problems:

X = A.S + E

Dimensions :

X = nb_pixels x nb_wavelengths = E A = nb_pixels x nb_sources S = nb_sources x nb_wavelengths

→ Pixel selection (before using BPSS) : spatial selection among the most "energetic" points considering the results of classical ICA method (JADE) 100 000 pixels → 300 pixels

Is the selection relevant?

Problems with computation time – Many iterations:

- burn-in iterations (convergence)
- other iterations (statistic iterpretation)

Is the computation time reasonable? (<< a few weeks)</p>

The projet OMEGA The projet The algorithm

development Profiling Optimizations Deployment

Issues Datas Algorithm Results

Conclusion

Why this project?

Project planning

To divelop a complete application

- Flexible (different datasets)
- As fast as possible
- Calculations chain possible

To authomatize the algorithm

- To stop the burn-in step
- To modificate parameters easily

To address issues

- Effet of pixel selection
- Robustness of the algorithm?
- Shall we "clean" input datas ?

Development

Profiling

Used memory : fuction "*memory*" → Study of the biggest array possible

Computing time: *Matlab Profiler* → Study of critical points

Function Name	Cals	Total Time	<u>Gelf Time</u> *	Total Time Plot (dark band - cell time
bpssdemo	1	179.608 s	0.162 s	
bpss2	1	179.027 s	17.504 s	
sample abundances	30	142.608 s	19.443 s	
dtrandnmult	300000	123.158 s	87.390 s	
truncrandn	1200000	31.672 s	31.672 s	
sample_sigma2e	30	16.964 s	2.781 s	
gamrnd	340	14.202 s	0.979 s	
gammar	300310	13.223 s	3.513 s	
gammar1	300310	9.710 s	9.710 s	
randperm	300030	4.103 s	4.103 s	

Algorithm			Features			
Profiling	Optimizations	1 st	1 st	modifications	2 nd	
Understanding	Tests	Deployment	results	convergence	deployment	

Development

Optimizations

On the code:

- Vectorizing loops
- Preallocating arrays for large data sets
- Study the influence of the data storage
- Rewrite some functions (MEX)

On the machine :

- Work on 64 bit processing
- Disable Java Environment on Matlab when it is not used
- Using multiprocessoring
- parallelize computing (on a grid)

Development

Optimizations

Originally planned: to use the GRID

With Matlab: need a lot of licenses very expansive → Impossible

With MCR (Matlab Component Runtime): need a single toolbox → creation of a standalone

 \rightarrow I wrote a documentation

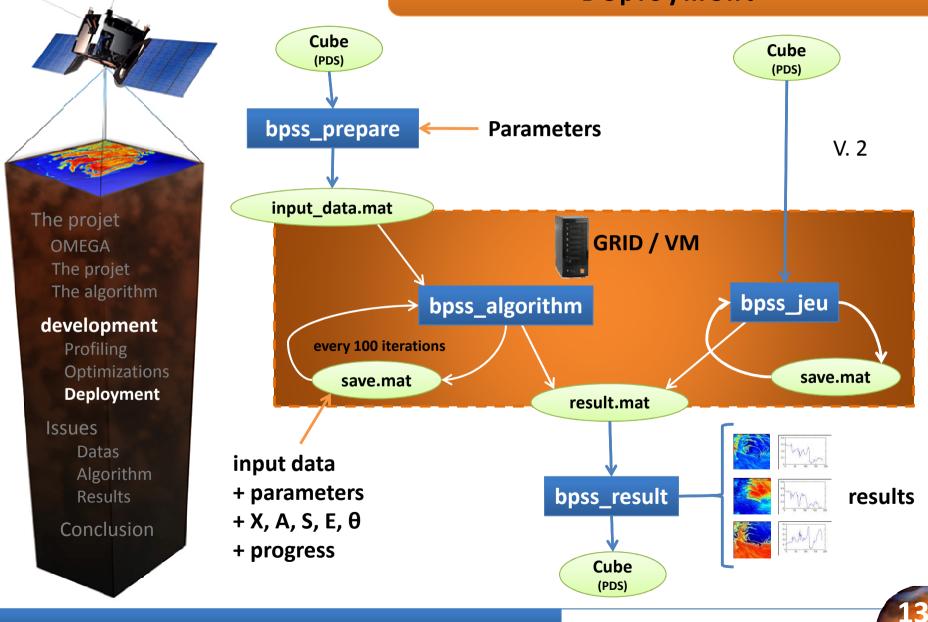
« Current » solution:

2 virtual machines

Mean computation time: from a few hours \rightarrow 1 day

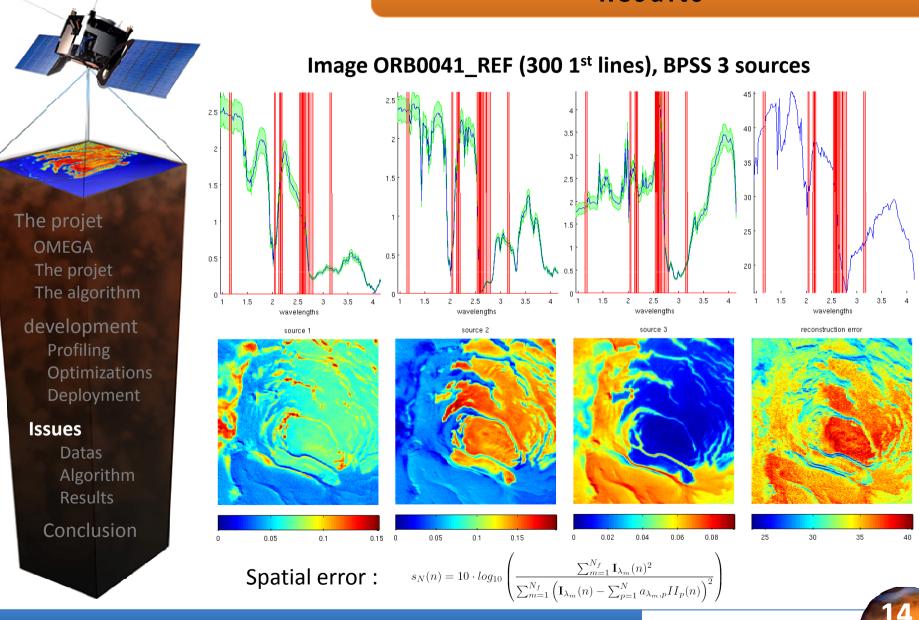
Development

Deployment



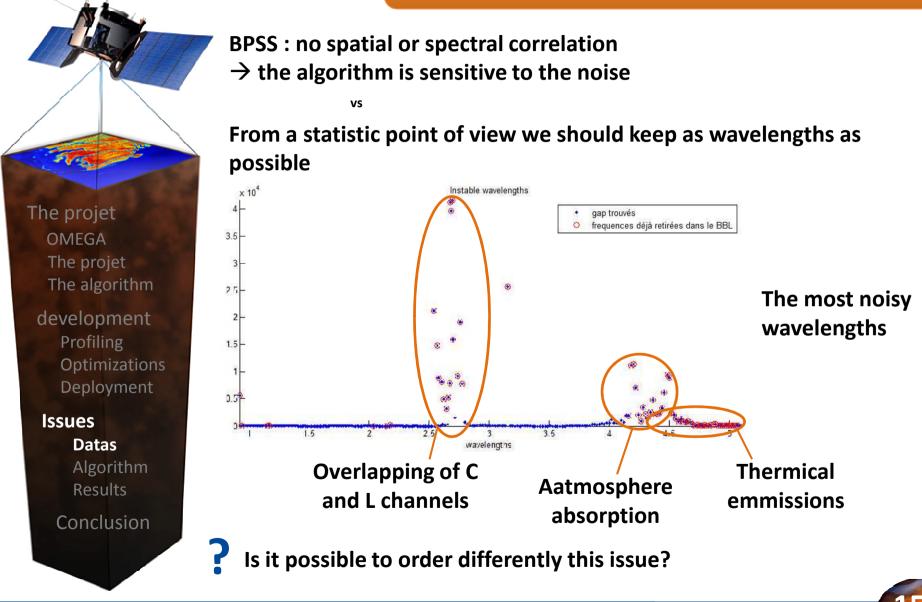
Issues

Results



Issues

Data – Bad spectra



Issues

Data – Selection of pixels

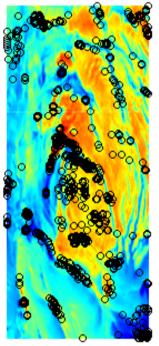
The projet OMEGA The projet The algorithm development Profiling Optimizations Deployment Issues Datas Algorithm Results Conclusion

Originally made to solve the computing time issue: \rightarrow How to make the application being more robust?

Differents methods :

- simple JADE
- « convex » method
- the most differents

Default method: « convex » method



selection of 699 pixels

method of selection : using convex envelope

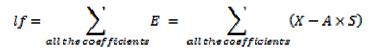
Issues

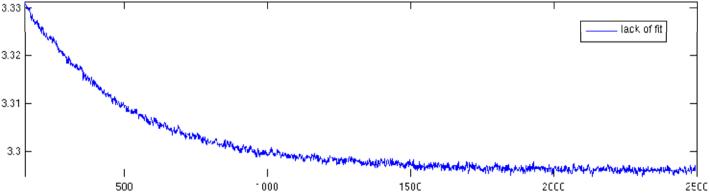
Convergence

The projet **OMEGA** 3.33 The projet The algorithm 3.32 development 3.31 Profiling Optimizations Deployment 3.3 Issues Datas Algorithm Results Conclusion

We want the stationnarity, how to define it?

Choice : stationnarity of « lack of fit » :





Issues

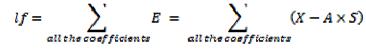
Convergence

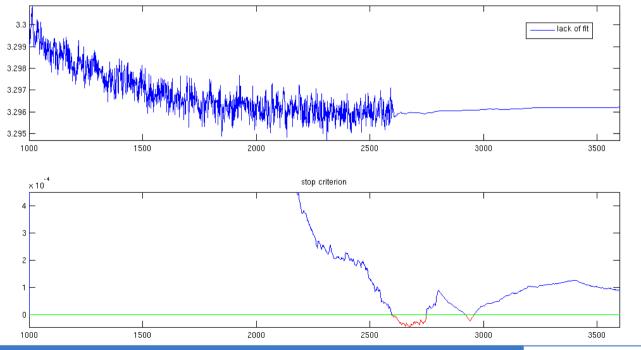
The projet OMEGA The projet The algorithm development Profiling Optimizations Deployment Issues Datas Algorithm Results Conclusion

Remind: X = A.S + E

We want the stationnarity, how to define it?

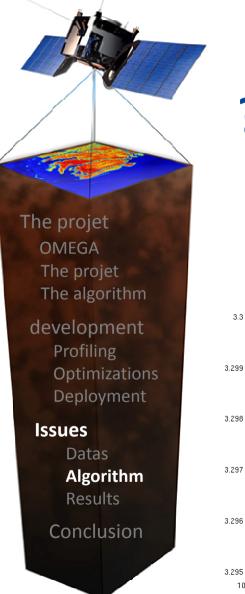
Choice : stationnarity of « lack of fit » :





Issues

Convergence



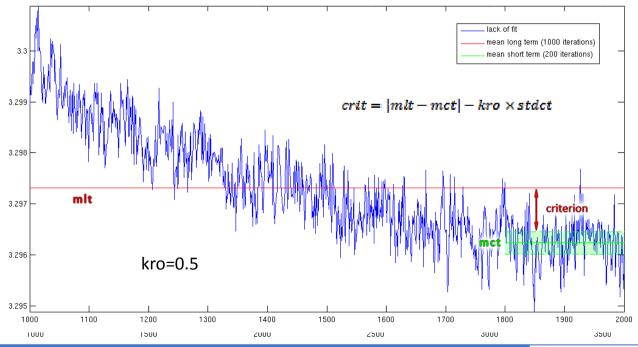
Remind: X = A.S + E

We want the stationnarity, how to define it?

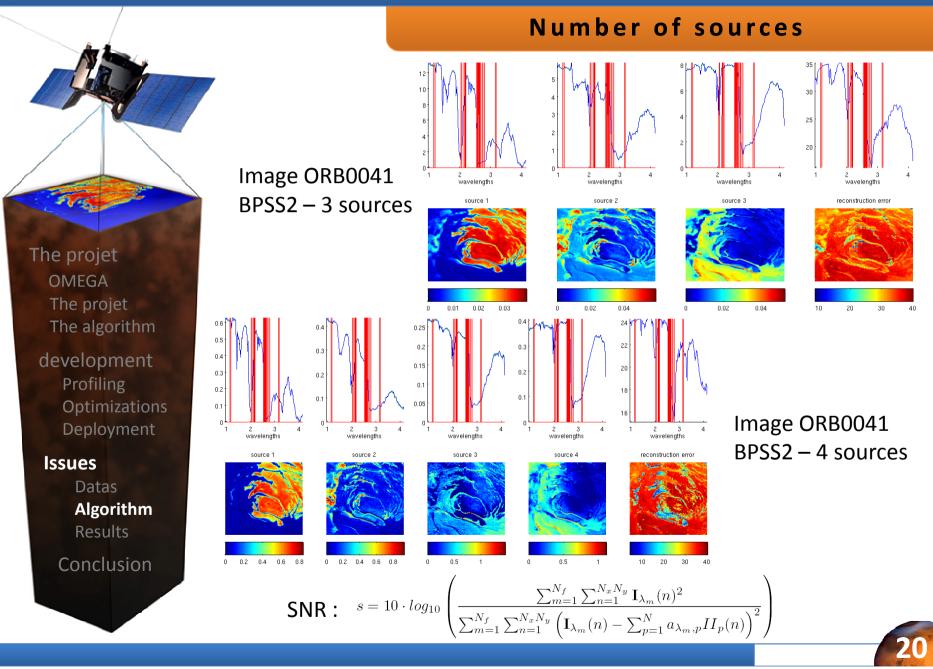
Choice : stationnarity of « lack of fit » :

lf = $(X - A \times S)$ all the coefficients all the coefficients

Stop criterion :



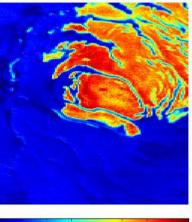
lssues



lssues

Result analysis

Comparison with spectrum libraries (from laboratories)

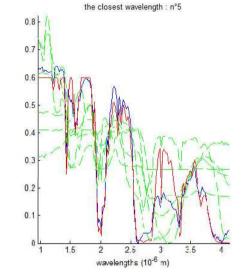


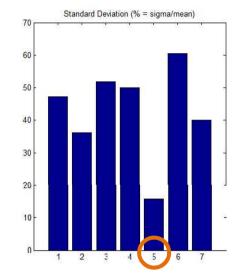
source 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A few tests:

- 1. H_2O , grain 1
- 2. H₂O, grain 100
- 3. H₂O, grain 1000
- 4. CO₂, grain 100
- 5.) CO₂,grain 10,000
- 6. BASALTE LPG AP
- 7. GYPSUM AP

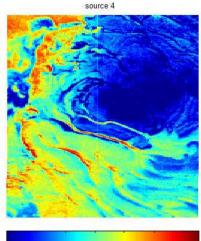




lssues

Result analysis

Comparison with spectrum libraries (from laboratories)



A few tests:

0.2

0.1

0.3

1. H_2O , grain 1

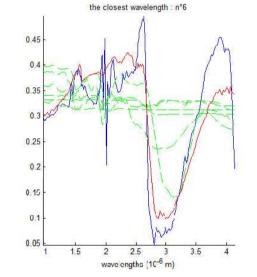
0.4

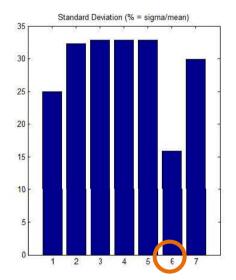
- 2. H₂O, grain 100
- 3. H₂O, grain 1000

0.5

0.6

- 4. CO₂, grain 100
- 5. CO₂,grain 10,000
- 6. BASALTE LPG AP
- 7. GYPSUM AP

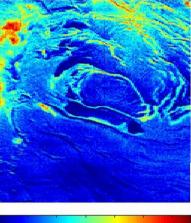




lssues

Result analysis

Comparison with spectrum libraries (from laboratories)



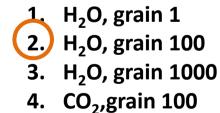
source 3

A few tests:

0.2

0.1

0.3

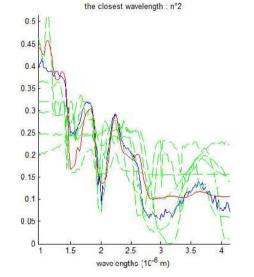


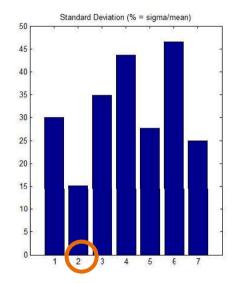
0.4

0.5

0.6

- 5. CO₂, grain 10,000
- 6. BASALTE LPG AP
- 7. GYPSUM AP

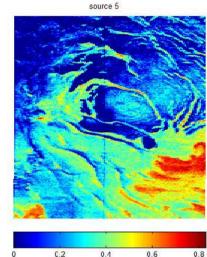




Issues

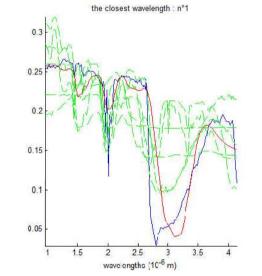
Result analysis

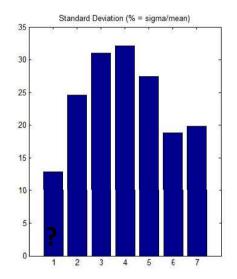
Comparison with spectrum libraries (from laboratories)



A few tests:

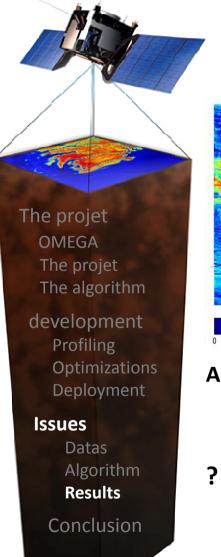
- ? 1. H_2O , grain 1
 - 2. H₂O, grain 100
 - 3. H₂O, grain 1000
 - 4. CO₂, grain 100
 - 5. CO₂, grain 10,000
 - 6. BASALTE LPG AP
 - 7. GYPSUM AP



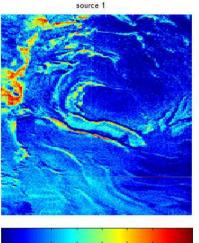


lssues

Result analysis



Comparison with spectrum libraries (from laboratories)



A few tests:

0.2

0.1

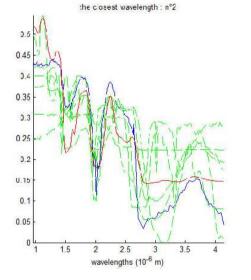
1. H₂O, grain 1

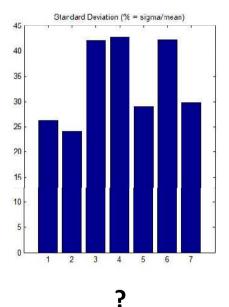
0.3 0.4 0.5

2. H₂O, grain 100

0.6 0.7

- 3. H₂O, grain 1000
- 4. CO₂, grain 100
- 5. CO₂,grain 10,000
- 6. BASALTE LPG AP
- 7. GYPSUM AP





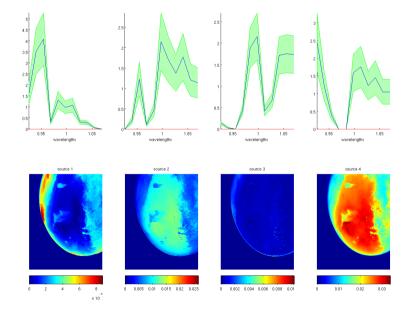
\rightarrow Many doubts

Next steps:

- identification of linear mixings
- increase library size

Conclusion

- → The toolbox can be used in an automatic mode (parameters can be changed)
- \rightarrow Adaptable to any otherdataset
- \rightarrow Articles has been submitted in WHISPERS
- \rightarrow Many teams were interested in testing it
 - Osiris
 - Merid
 - Virtis



Results on OSIRIS 4 sources

Conclusion

- → The toolbox can be used in an automatic mode (parameters can be changed)
- ightarrow Adaptable to any otherdataset
- \rightarrow Articles has been submitted in WHISPERS
- \rightarrow Many teams were interested in testing it
 - Osiris
 - Merid
 - Virtis

Questions ?

