An X-ray/radio sample of Active Galactic Nuclei

Nuria Fonseca Bonilla

Tutor: Stefano Bianchi

Matteo Guainazzi

Brief introduction

Results

Conclusions

1. What does Active Galactic Nuclei mean?

- The term AGN refers to:
 - Extreme luminosities (L~10⁴² 10⁴⁶ erg s⁻¹) not produced by stars
 - Luminosity comes from a very compact region (nucleus) → implies the presence of SMBH
 - The main and more efficient mechanism to produce energy is accretion → ACCRETION DISK

2. Classification of AGN

- radio loud (powerful jets):
 - e.g: radio galaxies, quasars, blazars...
- radio quiet
 - radio quiet quasars (RQQs)
 - Veron '06: M_{ABS} < -23</p>
 - Seyfert
 - Veron '06: M_{ABS} > -23

3. Unification Model

Geometrical effects are important:

Seyfert 1s
Narrow and broad lines

Seyfert 2s
Only narrow lines

4. AGN emissions:

- Optical/UV band: "big blue bump"
 → Accretion
 Disk
- IR band: thermal emission → Dust (torus)
- Radio → Jet
- X-ray → Comptonization of disk photons
 - Soft: 0.5-2keV
 - Hard: 2-10keV
- Wide spectrum
- > Emission in all bands

5. Advantages of a multiband analysis

- Each component has a different origin
- Better knowledge of the properties of an AGN
- Main goal of this project: DATA CORRELATION
 - X-ray data (XMM Newton)
 - Radio and optical data (catalogues)
 - Vizier: http://vizier.u-strasbg.fr/viz-bin/VizieR
 - NED: http://nedwww.ipac.caltech.edu/
 - ADS: http://adswww.harvard.edu/
 - SIMBAD: http://simbad.u-strasbg.fr/

6.Data

- X-ray:
 - 116 Type 1 AGN targeted by XMM-Newton
 - Luminosities in both bands: hard & soft
 - Main spectral properties (iron line, spectral index...)
- Optical:
 - M_{ABS} to distinguish between Quasars and Seyfert
- Radio:
 - Flux in 6cm (5GHz) and 20cm (1.4GHz)

An X-ray/radio sample of Active Galactic Nuclei

REFERENCES (RQQ):			
(1) Veron 2006 Quasars and Active Galactic Nuclei			
(2) Kellerman 1989 VLA observations of objects in the Palomar Bright Quasar Survey			
(reference in Veron for data, some with upper limit (#) <0.25mJy)			
(3) Kuhn 2001 A Search for Signatures of Quasar Evolution			
(reference in Veron for data, with upper limit (#))			
(4) Condon 1998			
(5) Gregory 1996			
REFERENCES (Sy1):			
(1) Veron 2006 Quasars and Active Galactic Nuclei			
(2) Kellerman 1989 VLA observations of objects in the Palomar Bright Quasar Survey			
(reference in Veron for data, some with upper limit (#) <0.25mJy)			
(3) Gregory 1991			
REFERENCES(NLSY)			
(1) Veron 2006 Quasars and Active Galactic Nuclei			
(2) Kellerman 1989 VLA observations of objects in the Palomar Bright Quasar Survey			

7. Example of a table of data: NLSY

COORDENATES	NAME	RAJ2000 DEJ2000 F6CM RF F20CM	RF MABS
107.172917 -49.551778	1140707_405	7 08 41.5 -49 33 06	-20.9
340.663939 29.725364	AKN564		
			1 -21.0
207.143750 26.368611	E1346+266		1 -25.0
201.330333 -38.41486	IRAS13224-3809		1 -24.2
204.328032 24.384242	IRAS13349+2438	3 37 18.8 +24 23 04 0.007 1 0.020	
13.395585 12.693390	IZW1	0 53 34.9 +12 41 36 0.003 1 0.008	
37.522704 -8.997943	MRK1044		1 -20.3
21.885635 19.178833	MRK359		1 -20.2
220.531097 35.439701	MRK478	4 42 07.5 +35 26 23 0.001 1 0.003	
239.790109 35.029865	MRK493	5 59 09.6 +35 01 47 0.001 1 0.003	1 -20.7
184.610456 29.812872	MRK766	2 18 26.5 +29 48 47 0.006 1 0.040	1 -20.1
311.586954 -2.812579	MRK896	0 46 20.8 -02 48 45 0.038 1	-20.8
31.957764 2.715532	NAB0205+024	2 07 49.8 + 02 42 55 0.002 1	-24.2
213.311942 -3.207487	NGC5506	4 13 14.8 -03 12 26 0.132 1 0.331	1 -17.9
211.317479 25.926369	PG1402+261	4 05 16.2 +25 55 34 0.001 1 0.001	1 -24.5
222.786542 27.157500	PG1448+273		1 -23.0
236.376000 48.769194	PG1543+489	5 45 30.2 +48 46 10 0.001 1 0.002	
339.032000 13.732028	PG2233+134	2 36 07.7 +13 43 55 0.0005 2	-25.0
24.982505 6.322593	PHL1092	1 39 55.8 +06 19 21	-25.2
158.660829 39.641158	RE1034+396		1 -21.4
46.664875 0.062000	RXJ0306.6+0003		1 -20.8
50.813792 -49.518389	RXJ0323.2-4931	3 23 15.3 -49 31 07	-21.7
340.481250 -44.081944		2 41 55.3 -44 04 58	-26.9
14.333101 -22.383083	TONS180	0 57 20.2 -22 22 56	-23.3
14.555101 -22.565005	1000	0 37 20.2 -22 22 30	-23.3

8. Final results: HIGH ENERGY band [2-10keV]

→ GOOD CORRELATION: no differences between objects

8. Final results: LOW ENERGY band [0.5-2keV]

→ GOOD CORRELATION: no differences between objects

8. Final results: ratio SOFT/HIGH bands

→ NLSY (red): higher soft excess than other sources

→ No evidence of correlation with radio

9. Further analysis

- Searching FWHM Hβ in literature to reclassify sources:
 - Narrow lines < 2000km/s
 - Broad lines > 2000km/s
- Analysis in other bands
- Further analysis with other parameters and correlations

10.Conclusions

- Search in catalogs for data:
 - M_{ABS} to separate Quasars and Seyfert
 - Radio fluxes looking for correlations
 - FWHM to reclassify in NL and BL

Results:

- Good correlation between X-ray/radio
 - Both emissions related with main parameters of AGN (mass, accretion rate...)
 - Not depends on the object
- Large soft excess in NLSY