An X-ray/radio sample of AGN

Nuria Fonseca Bonilla

Tutors: Stefano Bianchi Matteo Guainazzi

OUTLINE

- Basic physics of AGN
 - Data and Results
- Conclusions and Outlook

1. The term AGN refers to:

- Extreme luminosities (L~10⁴² − 10⁴⁶ erg s⁻¹) not produced by stars
 - Luminosity comes from a very compact region (nucleus) → implies the presence of SMBH
 - The main and more efficient mechanism to produce energy is accretion → ACCRETION DISK

2. Scheme and parts of an AGN:

3. AGN emissions:

- Optical/UV band: "big blue bump"→
 Accretion Disk
- IR band: thermal emission → Dust (torus)
- Radio → Jet
- X-ray → Comptonization of disk photons
 - Soft: 0.5-2keV
 - Hard: 2-10keV
 - Emission in all bands

4. Classification of AGN

- radio loud (powerful jets):
 - e.g: radio galaxies, quasars, blazars...
- radio quiet
 - radio quiet quasars (RQQs)
 - M_{ABS} < -23 (Veron '06)
 - Seyfert
 - $M_{ABS} > -23$ (Veron '06)

5. Unification Model

Geometrical effects are important:

6. Advantages of a multiwavelength analysis

- Each component has a different origin
- Better knowledge of the properties of an AGN
- Main goal of this project: DATA
 CORRELATION
 - X-ray data (XMM Newton)
 - Radio and optical data (catalogues)
 - Vizier: http://vizier.u-strasbg.fr/viz-bin/VizieR
 - NED: http://nedwww.ipac.caltech.edu/
 - ADS: http://adswww.harvard.edu/
 - SIMBAD: http://simbad.u-strasbg.fr/

7. Results: the AGN catalogue

- X-ray:
 - 130 Type 1 AGN targeted by XMM-Newton
 - Luminosities in both bands: hard & soft
 - Main spectral properties (iron line, spectral index...)

Optical:

- M_{ABS} to distinguish between quasars and Seyfert
- BH masses
- Hβ FWHM to reclassify sources:
 - Narrow line < 2000km/s
 - Broad line > 2000km/s

Radio:

Flux in 6cm (5GHz) and 20cm (1.4GHz)

Nuria Fonseca Bonilla

8. Final results: HIGH ENERGY band [2-10keV]

GOOD CORRELATION: no differences between classes

Nuria Fonseca Bonilla

8. Final results: LOW ENERGY band [0.5-2keV]

→ GOOD CORRELATION: no differences between classes

Nuria Fonseca Bonilla

8. Final results: ratio SOFT/HIGH bands

NLSY (red): higher soft excess than other sources
 No evidence of correlation with radio data

 Final results: ratio SOFT/HIGH bands and Hβ FWHM

→ Large X-ray ratio for sources with narrower Hβ FWHM:

CORRELATION!!!

$$v \downarrow \Rightarrow FWHM \downarrow \Rightarrow r_{BLR} \uparrow$$

$$\downarrow BHmass \Rightarrow good AD models$$

- 9. Further analysis
 - Tests in other bands
 - Studies with other parameters and correlations

10.Conclusions

- Search in catalogues for data:
 - M_{ABS} to separate quasars and Seyfert
 - Radio fluxes looking for correlations
 - Hβ FWHM to reclassify in NL and BL

Results:

- Good correlation between X-ray/radio
 - Both emissions related to main parameters of AGNs (mass, accretion rate...)
 - Not depends on the class
- Large soft excess in NLSY
- Correlation between X-ray ratio and Hβ FWHM

More details in Bianchi et al. (in prep.)