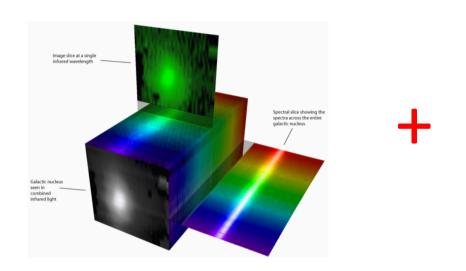
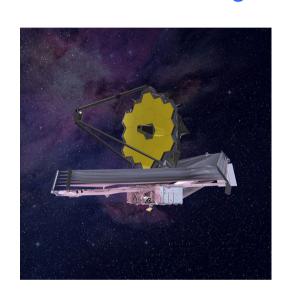
The NIRSpec GTO Galaxy Assembly IFS Survey

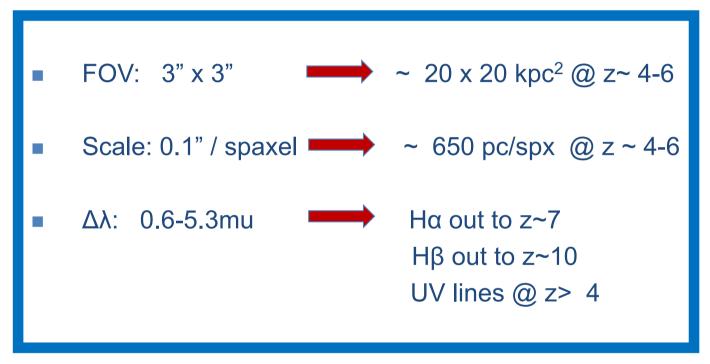
Santiago Arribas, Roberto Maiolino, Pierre Ferruit for the NIRSpec Galaxy Assembly GTO Team

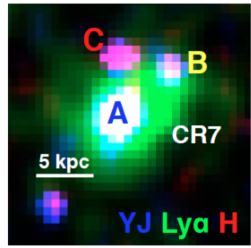



The NIRSpec Galaxy Assembly GTO team				
P. Ferruit **				
R. Amorín	R. Maiolino **			
S. Arribas **	T. Martinsson **			
T. Böker **	M. Maseda			
N. Bonaventura**	N. Lueztgendorf **			
A. Bunker **	C. Pacifici **			
S. Carniani **	P. Pérez González **			
S. Charlot **	J. Pforr			
J. Chevallard	B. Rauscher			
E. Curtis Lake	T. Rawle **			
M. Franx **	HW. Rix **			
G. Giardino	B. Rodriguez del Pino **			
B. Husemann **	R. Smit			
P. Jakobsen **	C. Willott **			
** More directly involved in the IFS-part of the GA program				

NIRSpec IFS: Science Capability

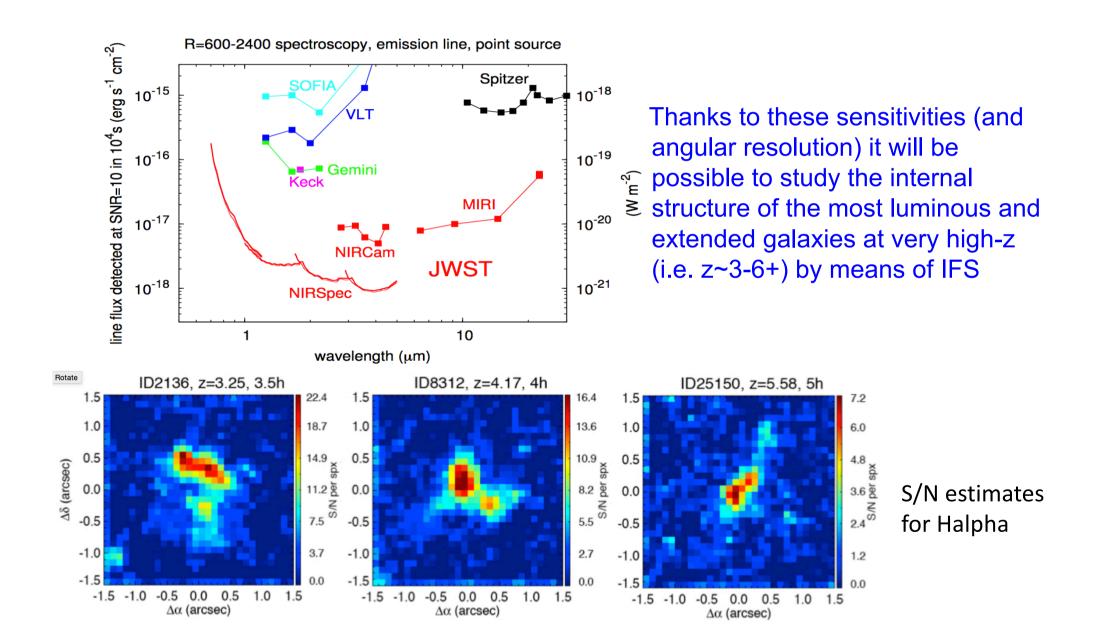
NIRSpec IFU => First IFS in space at near- IR wavelengths


Inherent potential of IFS


JWST capabilities

- IFS at high sensitivity (orders of magnitude improvement)
- IFS over a wide spectral coverage (0.6 5.3 microns) free from at. absorption
- IFS at high angular resolutions (~ 0.1 ")
- IFS with a very stable PSF

NIRSpec –IFS @ high-z


e.g. CR7 @ z=6.6

NIRSpec IFU FoV

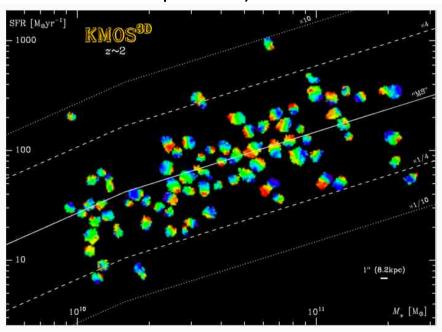
- R: 2700 , 1000, 100
- At R = 100 the whole range 0.6-5.3 μ m \rightarrow 1 setting
- At R=1000 and 2700 to cover $\sim 1 5.2 \mu m$ \rightarrow 3 settings
- Velocity resolution up to ~ 100 km/s (for R2700)

NIRSpec –IFS @ high-z

The NIRSpec GTO Galaxy Assembly IFS Survey: Overall Goal and Plan

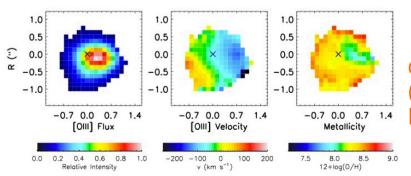
Generic goal

 Characterize the internal structure of a sample of high-z SFGs and AGNs to investigate the physical processes driving galaxy evolution across cosmic time

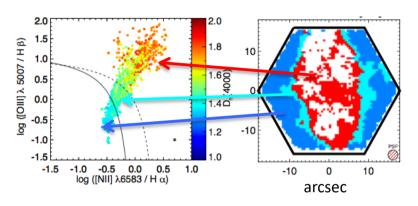

Overall Plan

- Sample:
 - ~50 targets among the most luminous and extended (i.e. appropriate for the IFU)
 - Complementary to the samples for NIRSpec MOS surveys (see Bunker et al. this session)
- Observations:
 - High resolution (R2700) observations of the main optical emission lines (Hbeta $H\alpha$) in a selected wavelength band
 - Low resolution (R100) observations over 0.6-5.3 microns for the continuum, for the SFGs

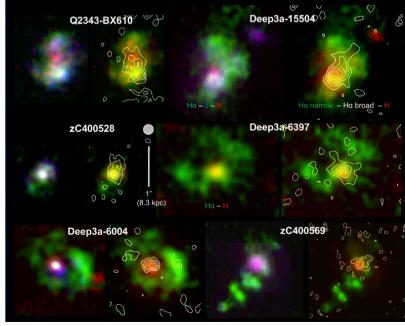
Extend ground-based IFU work done for z < 3 up to 8+


Some of the science cases (I/II)

Mapping dynamics and kinematics for different classes of galaxies (in and out of the "main sequence") out to z~6


Wisnioski+15

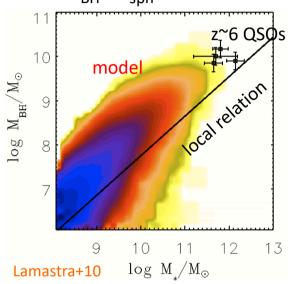
Evolution of metallicity and metallicity gradients for z>2.5


Cresci+10 (AMAZE, z~3) [also Wuyts+16]

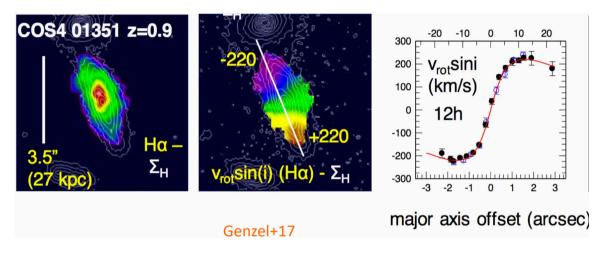
Mapping stellar populations and BPT diagnostics

Belfiore+14 (local)

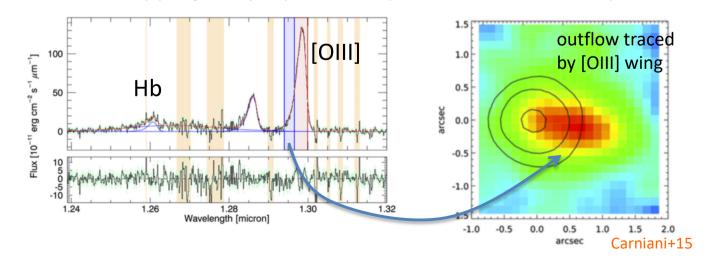
SF distribution and outflow properties in SFGs

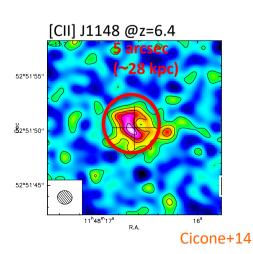


Forster-Scheiber+14 (SINS z~2)

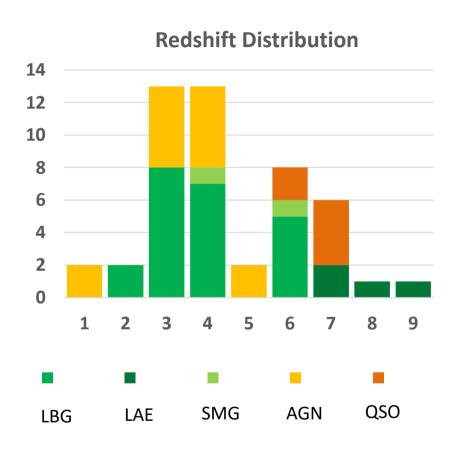

Extend ground-based IFU work done for z < 3 up to 8+

Some of the science cases (II/II)


Evolution of the M_{BH} - M_{sph} relation



Dynamical and stellar masses, and the evolution of DM/baryon ratio


Mapping the properties of primordial SMG and quasar hosts, and their outflows

GA-IFU Program Summary: 48 targets (1.5 < z < 8.7)

Sample	# targets, z, location	Band	lines	t (h)
LBGs 2 @ z~ 2 in GS		G140H	[OII]	2
Opt-UV sel.	G235H	[SIII]	2	
	R100		0.5	
	8 @ z~ 3 in GS and FF	G235H	Hb – Ha	4
		R100		1
7 @ z~4 in GS an COS	7 @ z~4 in GS and COS	G395H (G235H for 4891)	Ha – [SIII]	4.5
		R100		1
5 @ z~6 in GS COS	5 @ z~6 in GS and	G395H	Hb – Ha	5
	COS	R100		1
SMGs	2 @z~4 and 6 in	G395H	(Hb)– Ha– ([SIII])	2
the field	the field	R100		1
LAEs	LAEs 4 @z>6.6. 2 EGS, 1	G395H	Hbeta-(Ha-[SII])	5
COS, 1 UDS	R100		1	
AGNs	2 @ z~1.5 in COS	G140H	Hbeta-[SII]	0.75
	10 @ z~3.5 in GS and COS	G235H	[OII]-[SII]	1
	2 @z~4.7 in GS	G235H	[OII]	1
	and field	G395H	[SIII]	1
QSOs	6 @z>6 in the field	G395H	Hb – Ha	3

GA-IFU Program Summary: 48 targets (1.5 < z < 8.7)

by sample

Sample	# targets, z, location
LBGs Opt-UV sel.	2 @ z~ 2 in GS
Sei.	8 @ z~ 3 in GS and FF
	7 @ z~4 in GS and COS
	5 @ z~6 in GS and COS
SMGs	2 @z~4 and 6 in the field
LAEs	4 @z>6.6. 2 EGS, 1 COS, 1 UDS
AGNs	2 @ z~1.5 in COS
	10 @ z~3.5 in GS and COS
	2 @z~4.7 in GS and field
QSOs	6 @z>6 in the field

APT proposal	Prop ID	# tar	Slew / Coordination
GOODS-S: SFGs+AGNs	1216	20	3 large slews
COSMOS: SFGs+AGNs+CR7	1217	15	2 large slews
EGS: 2 LAES	1262	2	Slew with MIRI
BR1202: AGN, Field	1220	1	(2 pointings)
QSO_1: J1148, 0010	1218	2	
QSO_2: J1120	1263	1	slew with MIRI
QSO_3: J2348	1219	1	slew Reio+MIRI
QSO_4: J0020, J0109	1222	2	slews with Reion.
ID14-MAC0416 in FF	1208	1	slew with NIRISS
SMG: GN20+ HLFS3	1264	2	slews with MIRI
HIMIKO	1215	1	slew WIDE/UDS

- Observations distributed into 11 APT proposals to improve efficiency (i.e. smart accounting, share slew)
- 7 proposals are in coordination with other GTO programs, 5 involving other instrument GTOs

• THE END