A Complete Census of Herschel sources within the Hubble Frontier Fields

T. Rawle^{1,2} (tim.rawle@sciops.esa.int), B. Altieri², E. Egami³, P. Pérez-González⁴, J. Richard⁵ I. Valtchanov², G. Walth³, and the HLS Collaboration

¹ESA @ STScI, ²ESAC, ³University of Arizona, ⁴Universidad Complutense Madrid, ⁵Observatoire de Lyon

Rawle+16 (arXiv:1508.00586) presents a complete census of all **263** Herschel-detected sources within the six HST Frontier Field (HFF; Lotz+16) clusters.

We provide a robust legacy catalogue of Herschel fluxes, predominantly based on imaging taken by the **Herschel Lensing Survey** (HLS; Egami+10). Photometry is derived via a simultaneous PSF-fit using priors from archival Spitzer IRAC+MIPS imaging.

We optimally combine Herschel, Spitzer and WISE infrared photometry with data from HST, VLA and ground-based observatories, identifying optical counterparts in all cases. Knowledge of the counterpart is vital to gain **a source redshift**, which in turn allows the derivation of magnification factor (μ), intrinsic IR luminosity and characteristic dust temperature. The counterpart catalogue therefore provides a comprehensive view of dusty star formation within the Frontier Fields.

MACS0717 HST ACS 435/606/814 image with Herscheldetected FIR sources highlighted (green circles have spec-zs, white rely on photo-zs).

Over all six clusters, the Herschel catalogue contains **163 lensed sources**. Nine are magnified by $\mu > 4$, and 29 are more than doubled in brightness. The sample includes 99 LIRGS ($10^{11} < L_{IR} < 10^{12} L_{\odot}$) and 23 sub-LIRGs ($L_{IR} < 10^{11} L_{\odot}$).

⇒ UPPER PANEL: All catalogue sources plotted by intrinsic L_{IR}. Magnification effects are denoted by the grey vertical lines for each source. The highest magnification, intrinsically faintest, sources tend to be located at 0.6 < z <1.6. LOWER PANELS: The highly magnified arc in A370 appears extended in Herschel bands. With μ > 100, the galaxy has a source plane (intrinsic) L_{IR} ~ 10¹⁰ L_☉ at z = 0.73.

Unfortunately, for sources with only photo-zs, the derived intrinsic parameters have large uncertainties.

Augmenting Herschel analysis with the JWST NIRSpec MSA

For optically-faint Herschel samples in crowded lensing cluster fields, **NIR multi-object spectroscopy** can efficiently provide redshift and diagnostic information for sources unobtainable with current optical instruments.

 \implies

- emission lines for redshift estimation at $z \sim 1-3$, including those within the optical "redshift desert"
- star formation from Ha emission, and hence obscuration constraints
- metallicity from the [NII]/Ha ratio
- at higher redshift, further lines such as [OIII], Hβ (both for z > 2.5), [OII] (z > 4)

NIRSpec has a suite of selectable optical elements designed to obtain spectra covering 1–5 μ m in three bands (1.0–1.8, 1.7–3.1, 2.9–5.2 μ m), and at three levels of resolution (R~100 prism, and R~1000 or 2700 grisms).

The **MSA** mode offers an array of ~250,000 configurable microshutters, enabling the selection of up to ~100 simultaneous targets by opening slit-lets (0.2" width) within 4 quadrants covering a 3'x3' field.

We create an example MSA configuration for the Herschel sources within MACS0717. The primary science goals are 1) determine redshifts for optically-faint counterparts, 2) measure Ha to assist in constraining internal extinction. We estimate SFR(Ha) ~ 0.5 M_{\odot}/yr at z~2 corresponds to a (>5 σ) detection of F ~ 5x10⁻¹⁸ erg/s/cm², and for galaxies at z>2.5 [OIII] will be comparably bright.

We use the G235H/F170LP elements to yield R~2700 spectra for $1.7-3.1 \mu m$. The sensitivity requirement can be fulfilled in ~40 min on-sky. Including target acquisition and configuration overheads, this can be executed in ~1 hr, and would include a 3-shutter nod pattern along the slit for sky subtraction and dithering in the dispersion direction to remove the detector gap.

LEFT: Our example MSA configuration for MACS0717 includes **22/33** of the Herschel sources (+63 Spitzer fillers). Here we show the predicted traces from the 4 MSA quadrants (grey outline squares) on the NIRSpec detectors (black squares). Note that with the selected filter/grating, traces will be obtained for 1.7–3.1 µm only (green and yellow segments). **RIGHT:** Zoom of the MSA surrounding two neighbouring slitlets (each of 3x1 shutters).

Based upon Rawle et al. submitted (MNRAS); arXiv:1508.00586

References: Egami et al., 2010, A&A, 518, 12; Lotz et al., 2016, in preparation