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Introduction {zesa

Physics of brown dwarfs challenge several areas,

for example:
- theory of star and planet formation
- physics of cool atmospheres

JWST Science Goals

The Birth Of Stars And Planetary Systems and
Protoplanetary Systems The Origins Of Life
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Distance: 316 pc

Size: ~2.6x2.3 pc (~34'x28")

Age: 2Myr

Population: ~400 spectroscopically
confirmed members

AlIWISE color ~1
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What is the dynamical history of IC 3482
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Minimum-spanning-tree method to quantify degree of mass segregation™:

3

‘mass segregation ratio’ (Aysg) =

2.15

m (Mg)

0.68 0.34 0.20 0.1 0.08 0.04

average random path length

path length of massive stars
(or brown dwarfs)

= No evidence that mass segregation has occurred at 2Myr in IC348.
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*Parker & Goodwin 2015, Allison et al. 2009, Parker & Alves de Oliveira (in prep.)



What were the initial conditions for \\\\\\\\g\}esa

star and planet formation in IC348? s

N-body simulations of the dynamical evolution of star-forming regions with

varying initial densities to characterize spatial structure and density™.

] quantifies and distinguishes between
mean distance between stars substructured and centrally

.. ] I concentrated regions.
mean length of the minimal spanning tree 7

Q-parameter =

= Observational value suggests less-dense initial conditions in IC348,

and a modest degree of dynamic evolution.

High initial density (5 ~ 10 Mg pc™2) _ Medium initial density (5 ~ 102 Mg pe™?)
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*Parker et al. 2014, Parker 2014, Wright et al. 2014, Parker & Alves de Oliveira (in prep.)




What was the impact of dynamical evolution s
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on star and planet formation in IC348? \=6Sa

N-body simulations of a young cluster with the dynamical history and initial
conditions of IC348, to examine the direct effects of interactions in the cluster on
stars and planetary systems.

Simulation set-up:
- Cluster: based on our findings of most likely initial conditions
- Primary stars: 400 stars randomly drawn from an IMF

- Stellar companions: assigned based on binary fractions associated with the
primary mass

- Planetary companions: 1 Jupiter mass planet on a 30 AU orbit is assigned to
single stars

European Space Agency

*Parker & Quanz 2012, Forgan et al. 2015, Parker & Alves de Oliveira (in prep.)



What was the impact of dynamical evolutiony
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on star and planet formation in I1C348? \=6Sa

= After ~2 Myr, ~3 to 7 planets initially orbiting their parent star at 30AU,
have been liberated and became free-floating planets.

= This is significantly less than what was found for an Orion-like
simulation, where ~10% of planetary companions were liberated.
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How can JWST help?

-9 square arcmin. field of view

¢ gl . - Low spectral resolution (30 to 300), prism-
MUltI-ObjECt SpEthOSCOpy with based mode covering the 0.6-5.0 micron range

0.2”-wide mini-slits. in one exposure.
- Medium spectral resolution (500 to 1300),

grating-based mode covering the 0.7-5.0 range

b1 . - 3"x3"field of view
% IFU SpGthOSCOpy with a - Low spectral resolution (30 to 300), prism-based mode
SR 0.1” Samp"ng. covering the 0.6-5.0 micron range in one exposure.
E — - Medium (500 to 1300) and high (1400-3600) spectral reso-
w (IFU made of 30 slices for a total of lution modes, covering the 0.7-5.0 range in 4 exposures.
E 900“spaxels”) - IFU and MOS cannot be used at the same time.
- 5slits available
High-(ontrast slit spectroscopy. All spectral resolution modes available.
— - SLIT can be used simultaneously to IFU or
a (including with a 1.6"x1.6” square aperture for MOS.
extra-solar planet transit observation)
ency
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Prepare observations with MSA planning toogt_ eSa
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Brown dwarf or planet?
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= Can we distinguish between an object formed by dynamical collapse of
the interstellar medium, and an object formed by core accretion?

Atmospheric models from
P. Tremblin, I. Baraffe, G. Chabrier
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logg: 4
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Brown dwarf or planet?
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= Can we distinguish between an object formed by dynamical collapse of
the interstellar medium, and an object formed by core accretion?

Atmospheric models from
P. Tremblin, I. Baraffe, G. Chabrier

10-2 L

The effect of vertical mixing:
Young Jupiter-mass object:
Teff: 1200K

logg: 4

logK,.: 0or8

Metallicity: Solar

F.(y)
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Luminosity (L)

Brown dwarfs in the field

What happens when a young brown dwarf,
~10 Jupiter masses, evolves?

| |
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It just gets cooler and
dimmer.

Such objects, Y dwarfs,
have now been found in
the solar neighbourhood.

European Space Agency



What can we learn from studying Y dwarfs

in the field?

Major challenge in the development of cool atmosphere models characterised by
strong molecular absorptions, condensate cloud formation and non-equilibrium
chemistry.

M-dwarfs: formation of molecules (H2, TiO, VO, H20, CO, FeH, CaH,..)
M/L transition from “clean” to “dusty” atmospheres

L-dwarfs: molecules condense (dusty atmospheres)
L/T transition: clearing of dust and the formation of CH4

T-dwarfs: methane absorption bands
T/Y transition: ammonia depletion? quenching of CO and CO,?

Y dwarfs: sulfide/H20 clouds? non-equilibrium chemistry due to vertical mixing?

Coolest known brown dwarf has an estimated T,.+~250K (about the same
temperature has here in ESTEC!, Jupiter has a Teff~120K)

European Space Agency



How can JWST help?

= NIRSpec observations: single/binary cool Y dwarfs

JWST/NIRSpec

MOS

-9 square arcmin. field of view
- Low spectral resolution (30 to 300), prism-

MU'ti-ObjECt SpGthOSCOpy with based mode covering the 0.6-5.0 micron range

0.2”-wide mini-slits.

IFU spectroscopy with a
0.1” sampling.

(IFU made of 30 slices for a total of
900 “spaxels”)

in one exposure.
- Medium spectral resolution (500 to 1300),
grating-based mode covering the 0.7-5.0 range

- 3"x3"field of view

- Low spectral resolution (30 to 300), prism-based mode
covering the 0.6-5.0 micron range in one exposure.

- Medium (500 to 1300) and high (1400-3600) spectral reso-
lution modes, covering the 0.7-5.0 range in 4 exposures.

- IFU and MOS cannot be used at the same time.

- 5 slits available

High-contrast slit spectroscopy. All spectral resolution modes available.

- SLIT can be used simultaneously to IFU or

(including with a 1.6"x1.6” square aperture for Mos.
extra-solar planet transit observation)




Y dwarfs - NIRSpec simulations @k eSa

= Can NIRSpec observations of Y dwarfs distinguish between different
model predictions? JWST/NIRSpec, PRISM, ~15 minutes

107

— Morley+2014,450K,logg=4

Atmospherlc mOdEIS from | — Tremblin+2015,4:g:,logg :20
Tremblin+2015 & Morley+2014
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Y dwarfs - NIRSpec simulations

= Can we observe Y dwarfs at different temperatures?

Atmospheric models from
Morley+2014

Y dwarf:

Teff: 450K, 350K, 250K
logg: 4

distance: 5 pc

Simulations:
NIRSpec, 1 hour on-source
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Y dwarfs - NIRSpec simulations {=esa

= Can we extend the study of cool
Y dwarf known?

Atmospheric models from
Morley+2014

Y dwarf (e.g., WISEO855):
Teff: 250K

logg: 4

distance: 2.3 pc

Simulations:
NIRSpec, 1 hour on source

atmospheres to the lowest temperature
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Conclusions

By studying the lowest mass and coolest brown dwarfs, JWST has the

potential to:

- place one of the most stringent observational constrains on star
formation theories by unveiling the low-mass end and cut-off of the IMF

- peer into the fate of embryonic planetary systems and their chances for
survival in the parent cluster environment

- unveil the ingredients and the physics of the coolest brown dwarf
atmospheres

NIRSpec capabilities are well suited to facilitate such observations.

Synergy with other JWST capabilities (e.g., MIRI spectroscopy, NIRCam
photometry, NIRISS spectroscopy or AMI) will further complement and
enlarge the scientific results.

European Space Agency
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Thank you
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Morley for providing model spectra of Y dwarfs.
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