Observing the distant Universe with the Integral Field Unit of NIRSpec

Santiago Arribas
for the NIRSpec Team
(NIRSpec Instrument Science Team, ESA Science Operation Team)

NIRSpec team	
C. Alves de Oliveira [ESA SOT]	G. Giardino [ESA SOT]
S. Arribas [IST]	P. Jakobsen [GTO team]
T. Beck [IST]	R. Maiolino [IST]
S. Birkmann [ESA SOT]	H. Moseley [IST]
T. Böker [ESA SOT]	B. Rauscher [IST]
A. Bunker [IST]	HW. Rix [IST]
S. Charlot [IST]	M. Sirianni [ESA SOT]
G. De Marchi [GTO team]	J. Valenti [GTO team]
B. Dorner [GTO team]	C. Willott [IST]
P. Ferruit (project scientist)	
M. Franx [IST]	

Outline

- Main characteristics NIRSpec Integral Field Unit
- Science potential @ high-z
- Goals of the GTO IFU program @ high-z
- Expected performance

NIRSpec

Developed by ESA with AIRBUS as the main contractor NASA provided the detectors and microshutter arrays

Modes of observation:

- MOS: Multi-Object Spectroscopy
- IFS: Integral Field Spectroscopy
- Slit Spectroscopy

NIRSpec Integral Field Unit

Image Slicer

- ■30 mirror facets (0.8mm x 12mm)
- •Unique curvature and tilt to generate a pseudo-slit at the input focal plane

The IFU of NIRSpec

- FOV: 3" x 3"
- Sampling: 0.1"
- 900 spaxels
- Can make use of all NIRSpec spectral configurations
 - o R=100 from 0.6 to 5.3 μm
 - o R=1000 and 2700 from 1.0 to 5.3 μm in 3 bands
- Entirely passive device (no moving parts)
 Shuttered by MSA magnet mechanism
- Point and shoot operations

Expected Sensitivities of the NIRSpec IFU

Emission line Extended sources

P. Ferruit

 10^4 sec, S/N=5

Limiting sensitivity - JWST/NIRSpec IFU - ES + LINE - R2700

2014-05-14T08:22:32.726876 Summation over 1 spatial and 2 spectral pixels - Recovering 100.0% of the source flux. Ref. NIRS30, OTE05 and MSA30

NIRSpec –IFU @ high-z

- FOV: $3" \times 3"$ => ~ $20 \times 20 \text{ kpc}^2$ @ z=5 ■ Scale: 0.1" / spaxel => ~ 640 pc/spx @ z=5 ■ $\Delta \lambda$: 0.6-5.3 mu => Hα out to z=7 Hβ out to z=9.7
- (R: 2700 => $\sim \Delta V = 100 \text{ km/s}$)

NIRSpec – IFU at high-z

- IFU data will allow us to characterize the internal physical and kinematical structure of high-z galaxies
- IFU data (for modest samples) are highly complementary to large spectroscopic surveys based on the MSA, which will provide the integrated spectra for large samples
- We expect that the IFU will be used for follow up observations of the MSA, and of other JWST instruments

Galaxy Assembly and Early Universe NIRSpec GTO program

- MSA wedding cake survey R100, R1000 (500h)
 - Deep, 20-40 sq arcmin, 1-5 μ m, 45% of the time, AB=29-30, 2<z<14
 - Medium, 100-200 sq arcmin, 1-5μm, 45% of the time, AB=27-28, 2<z<14
 - Shallow, >400 sq arcmin, 2-5μm, 10% of the time, AB=25-26, 7000+ spectra, 2<z<4 (4<z<14)

See talks by A. Bunker, and M. Franx

IFU spectroscopy of extended objects R2700 (300h)

Overall Objectives of IFU GTO program @ high-z

- Galaxy Assembly: (2.5 < z < 5+)</p>
 - NIRSpec/IFU will extend to higher z the IFU work done so far from the ground out to 2.5
 - H α not accessible from the ground for z> 2.5
 - Based on representative and homogeneous samples
- Early Universe: z> 5
 - To characterize the most luminous and extended objects (e.g. SMGs, QSOs, HyLIRGs, LAEs)
 - Likely more heterogeneous samples

(Priorities, targets under discussion within the IST)

Galaxy assembly: Some of the science cases

Mapping dynamics and kinematics for different classes of galaxies (in and out of the "main sequence", out to z~5)

Wisnioski+15

Mapping stellar populations and BPT diagnostics out to z~5

Belfiore+14 (local)

SF distribution and outflow properties out to z~5

Forster-Scheiber+14 (SINS z~2

Evolution of metallicity gradients from z=2.5 to $z\sim5$

Cresci+10 (AMAZE, z~3)

Early Universe: Some of the science cases

Dynamical and stellar masses of z~6-7 galaxies

Mapping the early chemical enrichment and stellar population in primordial SMGs and quasar hosts

Extended gas in the halo at z>6

Cicone+15

Expected performance

Expected performance: Predicted H α S/N maps of LBGs @ z= 3-4

Assumptions:

- Flux ($H\alpha$), from SED fitting and $H\beta$
- $H\alpha$ distribution=[OIII] distribution (Troncoso+14)
- Caveat: Flux distribution (seeing limited) → with NIRSpec-IFU, clumpier

R2700, t_{exp}= 3h

Expected performance: LBG @ z=3-4

LBGs @ z= 3 – 4 from Castellano+14

Ηα

CR7: The brightest LAE in COSMOS

(z=6.6)

 $L (Ly\alpha) = 8.5 e + 43 erg/s$

NIRSpec/IFU_FoV

FIG. 7.— A false colour composite of CR7 by using NB921/Suprime-cam imaging (Ly α) and two HST/WFC3 filters: F110W (YJ) and F160W (H). This shows that while component A is the one that dominates the Ly α emission and the rest-frame UV light, the (likely) scattered Ly α emission seems to extend all the way to B and part of C, likely indicating a significant amount of gas in the system. Note that the reddest (in rest-frame UV) clump is C, with B having a more intermediate colour and with A being very blue in the rest-frame UV.

Sobral et al. 2015

Assuming

- Lya/Ha = 8.7
- A dominant in Ly α
- r(A) = 2.5 kpc

 $SB (Ha) = 3 e-20 \text{ watt/m/"}^2$

 $H\alpha$ R2700 In 2.7h $S/N \sim 10$ (for <SB> in A) Unresolved ($H\alpha$) line

Summary

- The Integral Field Unit of NIRSpec is a very powerful tool for studying Galaxy Assembly, and for characterizing the most extended and luminous objects in the early Universe
- It is highly complementary to the NIRSpec MSA mode, and to other JWST instruments