The formation of super-stellar clusters

François Boulanger Institut d'Astrophysique Spatiale

Cynthia Herrera, Edith Falgarone, Pierre Guillard, Nicole Nesvadba, Guillaume Pineau des Forets

Outline

How do massive (globular-like) stellar clusters form ?

★ Background

- Young massive clusters in starburst galaxies
- ► H₂ and the JWST
- Turbulence and star formation
- ★ Discovery of a massive H₂ luminous cloud in the Antennae
 - It is likely to be the first known progenitor of a massive (>10⁵ M_o) stellar cluster

★JWST will discover a large sample of such clouds in the local universe

Massive star clusters

- ★ HST WFPC images of young massive clusters (YMCs) with halflight radii of a few pc and masses up to 10⁶ Mo in virtually all the starburst galaxies observed, including dwarf galaxies.
- The most massive are likely to be young globular clusters

How do they form ?

The Antennae by the HST

H₂ with the JWST

MIRI spectroscopy of H₂ rotational lines

 H_2 is the main coolant of molecular gas at T \gtrsim 100 K up to dissociation temperatures

 H_2 line emission \checkmark the energetics of the cold (star forming) gas

The JWST jump forward

★MIRI vs Spitzer spectrometer:

A factor 100 in sensitivity, 10 in angular resolution, 5-60 in spectral resolution

★NIRSPEC vs VLT/SINFONI

A factor 100 in sensitivity and 10 in angular resolution

Spectral diagnostics and modeling tools are available to identify H₂ emission powered by **turbulent energy dissipation** rather than UV heating

★The JWST spectral range offers multiple diagnostics to assess H₂ excitation

- ► H₂ to PAH emission ratio (Pierre Guillard's talk)
- Intensity ratios of H₂ lines
- Ratios between H₂ and ionized gas lines

★Much expertise and modeling tools available from the analysis of earlier data obtained with ISO and Spitzer

Snapshot of hydro simulations of the Antennae galaxies to 1pc resolution.

Renaud+15: Gas density 6 Myr after the second pericenter passage

Gas dynamics in interacting galaxies => Large scale compression and turbulence, which set the physical conditions for formation of massive clusters

Turbulent energy dissipation

- ★ Energy injection on galaxy-wide scales from the large gas dynamics
- ★ The gas flows have a high Reynolds number => they drive turbulence
- ★ The energy cascade from large to small scales drives supersonic turbulence in cold (molecular) gas => shocks

 Dissipation occurs mainly within molecular gas => H₂ line emission is a main tracer of turbulence dissipation ★Turbulence creates a range of density structures in interstellar matter and locally the initial conditions for star formation

★ The masses and sizes of clouds which become gravitationally bound depend on the turbulence amplitude (σ_v) and the ISM pressure (P_{ext})

$$M_c \, \alpha \, \sigma_v^4 \, P_{ext}^{-1/2}$$
 Maximum mass in equilibrium
 $R_c \, \alpha \, M_c^{1/2} \, P_{ext}^{-1/4}$ Corresponding radius Ebert-Bonner relations

With H₂ spectroscopy we probe the turbulent energy dissipation associated with the formation of ISM structures

Super Giant Molecular Complexes

> OVERLAP REGION

Wilson et al. (2000)

CO(1-0) OVRO

 $\Omega_{\text{beam}} \sim 4$ "

Much of the YMCs are found in the overlap region where CO observations have revealed the presence of super GMC (SGMCs) with masses of a few $10^8 M_0$ and large velocity dispersions ($\Delta v \sim 100$ km/s)

The Antennae Galaxies in H₂ emission

 $H_2 S(2)$ Spitzer $\Omega_{\text{beam}} \sim 5$ "

Follow-up spectral imaging of the K-band with SINFONI on the VLT, including the 1-0 and 2-1 S(1) lines of H₂

Brandl et al. (2009)

The Antennae Galaxies in H_2 emission H_2 |-0 S(|)

Brandl et al. (2009)

VLT/SINFONI Ω_{beam} = 0".6x0."7 ~ 60 pc Herrera et al. (2011, 2012)

H₂ luminous source in one of the SGMCs

Point-like H₂ Iuminous source

Have we discovered the progenitor of a massive cluster? => ALMA follow-up

H₂ compact source: Characteristics observations

No radio counterpart

Johnson+2015

- ★ The H₂ luminous source discovered with SINFONI has now been detected with ALMA in CO, 13CO, and dust continuum
- ★ It is a massive (5 10⁶ Mo) and compact (radius < 25pc) cloud with a velocity dispersion σ_v =50 km/s (FWHM = 115 km/s).
- ★ The virial mass is one order of magnitude larger than the mass inferred from the CO and dust emission

A high pressure (p/k ~10⁹ K cm⁻³) is necessary to bind the cloud

This pressure may be accounted for by the turbulent pressure of the H₂ emitting gas

This implies a short dissipation time of turbulence, i.e. the cloud evolutionary time

$$au_d = R_c / \sigma_v \, \alpha \, M_c^{1/4} \, P_{ext}^{-3/8}$$

Johnson+2015

The antennae source is so far unique => it must trace a short (≤10⁶ yr) evolutionary stage in the formation of YMCs

★ Search for cluster progenitors more efficiently and to a much larger (a factor 10) distance

★ A survey for H₂ luminous sources in starburst galaxies, including ultra luminous IR galaxies with an SFR one order of magnitude larger than that of the Antennae, will yield a significant sample of detections

★ It will provide the statistics needed to determine the evotulionary timescale of YMCs' progenitors

★ JWST will also characterize the progenitor clouds by resolving and imaging their H₂ emission.

- ★ JWST will improve the sensitivity, and the angular and spectral resolution, of Spitzer and VLT H₂ spectral imaging observations by one to two orders of magnitude
- \star This jump forward will open an immense discovery space.
- ★ JWST will unveil how massive (globular-like) stellar clusters form by discovering and characterizing their progenitor clouds
- ★ H₂ lines will also be detected in many JWST spectroscopic observation in galaxies (local to high z: Pierre Guillard's talk), star forming clouds, the diffuse ISM, young stellar objects, protoplanetary disks, evolved stars ...

What will be learned from H₂ spectroscopy will be a main and unique scientific outcome of the JWST.