Status of the James Webb Space Telescope (JWST) Observatory

ESTEC Mark Clampin JWST Observatory Project Scientist mark.clampin@nasa.gov Goddard Space Flight Center

JWST: How It Works

JWST's Optical System

Telescope Optics

Aft-Optics System

		18	andor 8APrinnaaryySbeggne	(FRWS SSIIE)) artiss 22877mm	
Mirror	Measured (RMS SFE)	Uncertainty (RMS SFE)	Continue Total (RMS SFE)	Requirement (RMS SFE)	
18 PM Segments (Composite Figure)	23.6	8.1	25.0	25.8	
Secondary	14.7	FOAM **Date *Minimum [3] **Date *Minimum [3] **Date *Minimum [3] *Date		23.2 nm PY: 515.5 nm	RMS: 14.2 nm 1 P ² 134.1 m
Tertiary	18.1	A state of the second s		500.0 100.0	
FSM	13.9	4 Parts Part			

Predicted Image Quality

Encircled Energy

• F115W

JWST

Clampin/GSFC

Observing Constraints

- Field of Regard is an annulus with rotational symmetry about the L2-Sun axis, 50° wide
- Sun angle constraints yield 35% instantaneous sky coverage
 - Full sky coverage achieved over a sidereal year
- Observations interrupted for:
 - Orbit maintenance
 - station-keeping burns
 - Momentum management
 - reaction desaturation burns

Observing Constraints

- Field of Regard is an annulus with rotational symmetry about the L2-Sun axis, 50° wide
- Sun angle constraints yield 35% instantaneous sky coverage
 - Full sky coverage achieved over a sidereal year
- Observations interrupted for:
 - Orbit maintenance
 - station-keeping burns
 - Momentum management
 - reaction desaturation burns

Optical Stability

- Optical stability modeling based on worst case hot-cold slew
- Wavefront error changes will be smaller when the telescope executes a real observing program. e.g. Gersh-Range and Perrin (2015)

- JWST should be zodi-limited at $\lambda < 10 \ \mu m$
 - Background levels will include contribution from stray light
 - Meet requirements @ 20 μm: 174 MJy/Sr vs 200 MJy/Sr req.

- Predicted performance for offset precision
 - from 0 45" currently expecting < 5.3 mas</p>

- Fine steering mirror offsets will be employed for offsets of <60 mas to deliver ~mas precision
 - Pixel response function mapping
 - Coronagraphy
 - Slit mapping

Telescope Structure

Pathfinder Backplane

Flight Backplane

Pathfinder Backplane

- The pathfinder is a backplane section with a secondary mirror support structure (SMSS)
 - Verify SMSS deployment
- Tests integration of primary mirror segment installation with two flight spare mirror segments, plus flight-spare secondary mirror

- Pathfinder is scheduled for three cryogenic tests during 2015 in Chamber-A at JSC
 - Verify optical test equipment

Primary Mirror Integration

Mirror Installation dry-run

Sunshield Membranes

- Five flight-like Template Membrane layers manufactured
 - Template layers tensioned to flight-like configuration
 - 3-D membrane shapes measured by Lidar
 - Critical for layer-to-layer spacing is thermal performance
 - Edge alignment is thermal performance & stray light
- Flight membranes under construction (#3 completed)

Tensioned to 3x flight tension for shape measurement by Lidar

(3x tension counteracts gravity sag)

Spacecraft Bus Structure Complete

JWST Integration: Path to Launch

JWST

Clampin/GSFC

How Do We Test the Telescope ?

- Cryogenic Optical Test will be conducted at JSC's Chamber A
- Goals of Cryogenic Optical Test
 - Optical workmanship check on assembly of the telescope e.g. mechanical interference

Optical alignment - are we inside the capture range of the telescope's active optics ?

Thermal balance - will the telescope cool to 40K ?

OTIS Test Preparations

Chamber Isolator Units

Dry Run testing w/Chamber-A

1) Dry run test- phasing two mirrors on pathfinder

- 2) Dry run imaging with AOS
- 3) Test thermal monitoring equipment

Overall Commissioning Schedule

Observatory& Instrument Commissioning

- Phased Instrument power-on with Temp.
- Observatory check-out & calibrations
 - Attitude control, acquisition, thermal
- Instrument check-out and calibration

JWST will do transformational science and change our view of the Universe

JWST IIII Launch 2018

JAMES WEBB SPACE TELESCOPE: DEPLOYMENT SEQUENCE

Where To Follow JWST

Web pages

www.jwst.nasa.gov

webbtelescope.org

Social Media

<u>Webcam</u>

www.jwst.nasa.gov/webcam.html

<u>ibook </u>⊪ itunes

James Webb Space Telescope

JWST Operations

JWST

Phasing the Telescope

