MIRI SPECTROSCOPY OF THE EPOCH OF GALAXY ASSEMBLY

LUIS COLINA (CAB/CSIC, SPAIN)

(On behalf of the MIRI EC high-z group)

OUTLINE

MIRI SPECTROSCOPY. A NEW WINDOW INTO THE HIGH-Z UNIVERSE

MIRI & REIONIZATION EPOCH. FIRST IONIZATION SOURCES

 \succ H α emitters at z ~ 7-10. Metal-poor vs. Metal-free

MIRI & GALAXY ASSEMBLY. DUSTY STAR-FORMING GALAXIES (DSFGs)

- Obscured AGNs. Prospects of direct detection
- \succ Tracing obscured (extended - Σ_{SFR} -) star formation
- Synergy with ALMA. KS-law at high-z

MIRI. JWST MID-INFRARED INSTRUMENT

Table 1: Observing Modes for the MIRI Instrument on Webb

Mode	Wavelength (microns)	Pixel Size/Resolving Power	Field of View
Imaging	5.0–28	0.11 arcsec	1.23×1.88 arcmin
Single Slit Spectroscopy	5.0-~14	$\lambda/\Delta\lambda = ~100$ at 7.5 microns	$0.6 \times 5.5 \mbox{ arcsec slit}$
IFU Spectroscopy	5.0-7.7	$\lambda/\Delta\lambda = 3500$	3.0×3.9 arcsec
Single target / Not affected by slit losses	7.7–11.9	$\lambda/\Delta\lambda = 2800$	3.5 imes 4.4 arcsec
	11.9–18.3	$\lambda/\Delta\lambda = 2700$	5.2×6.2 arcsec
	18.3–28.8	$\lambda/\Delta\lambda = 2200$	6.2×7.7 arcsec
Coronagraphy	10.65	0.11 arcsec	24×24 arcsec
	11.4	0.11 arcsec	24×24 arcsec
	15.5	0.11 arcsec	24×24 arcsec
	23	0.11 arcsec	$30 \times 30 \text{ arcsec}$

Spectroscopy (10σ, 10 ksec): ~10⁻²⁰ to ~6x10⁻¹⁷ Watt/m² (x10-100 Spitzer)

MIRI detailed description: Wright+, Rieke+, Wells+, Glasse+, Kendrew+, Boccaletti+, Bouchet+, Ressler+, Gordon+, 2015, PASP 127

MIRI. A UNIQUE WINDOW FOR THE STUDY OF HIGH-Z GALAXIES

First mid-IR instrument combining many new & unique capabilities:

- Continuous coverage 5-28 um REST-FRAME RANGE: 0.6um < λ < 6um
- Sub-arcsec imaging (x6 better than IRAC/Spitzer)
- Spatially resolved, sub-arcsec (0.2"- 0.6" pixel) 2D spectroscopy
 PHYSICAL SCALES ~ 1-2 kpc for z > 1.0
- Spectral resolution of R ~3000 (x5 HR IRS/Spitzer) KINEMATICS: velocity structures ~100 km s⁻¹

Sensitivity x10-100 better than Spitzer
 GALAXIES: fainter (z < 3) and higher redshifts (z>3)

KEY FOR DETAILED PHYSICS OF BIRTH & ASSEMBLY OF GALAXIES

REIONIZATION. PREDICTED STRONG EMISSION LINES @ Z~7-8

REIONIZATION SOURCES. EMISSION LINES & METALLICITY

MIRI SPECTROSCOPY OF REIONIZATION SOURCES

Only JWST instrument able to trace H α beyond z > 6.7 & [OIII]5007 @ z > 9

H α & [OIII] detectable (> 3 σ) in bright metal-poor sources Potential to identify bright (nearly-) metal free ionizing sources @ Z ~ 9-10

GALAXY FORMATION. THE DUSTY STAR FORMING PHASE

SF GALAXIES FORM A MAIN-SEQUENCE (MS) SFR OF MS GALAXIES INCREASES ~ x10-100 FROM Z~0 TO Z~3

HIGH-Z STARBURSTS, ABOVE-MS, SFR >> 100 M_{\odot} yr⁻¹

M> $10^{10} M_{\odot}$ MS SF GALAXIES \rightarrow DUSTY, IR-DOMINATED LUMINOSITY (DSFGs)

GALAXY ASSEMBLY. FORMATION SCENARIOS

ABOVE-MS SF GALAXIES: MERGERS OF GAS-RICH SYSTEMS?

Compact sizes: ~ 2 kpc radius No rotational pattern: V/ σ < 1 Caotic motions/radial flows, shocks Starbursts: SFR >> 100 M/ yr⁻¹ sSFR < 1 Gyr⁻¹

MS SF GALAXIES: CONTINUOUS GAS ACCRETION IN LARGE DISKS?

Extended sizes: ~ 5-10 kpc radius Turbulent rotating disks: $V/\sigma > 1$ Clumpy (kpc-size) SF regions Steady SFR ~ 10-100 M/ yr⁻¹ sSFR ~ 1 Gyr⁻¹

EARLY PHASES (Z~2-6) OF GALAXY ASSEMBLY. DETAILED PHYSICAL PROCESSES

NEED SENSITIVE HIGH ANGULAR RESOLUTION 2D (~1 kpc) IR (+OPTICAL) SPECTRA ON PROTOTYPES OF THE DIFFERENT CLASSES OF HIGH-Z GALAXIES

- Presence of obscured AGN & SF. Luminosity contribution?
- SF: KS-law? Clumpyness? Sizes? Distribution? Gas fraction?
- Flows: SF or AGN related? Quenching? Outflows/inflows?
- Kinematics: Mdyn? Thin/thick disks, mergers, turbulence, shocks?

MIRI MRS

OBSCURED AGNS. IR CORONAL LINES

MIRI. DETECTION OF HIGH-Z OBSCURED AGNS

DETECTION (>5 σ) OF OBSCURED AGN WITH L(AGN)> 10 x L(NGC1068) @ z < 3

OBSCURED STAR FORMATION. IONIZED GAS TRACERS

13

Several hydrogen lines within MIRI range for Z ~2 to 6

TRACING STAR FORMATION IN HIGH-Z DSFGs

SIGNIFICANT DETECTION (> 5σ) OF (ABOVE-) MS DSFGs IN < 10 HOURS

IONIZED GAS STRUCTURE & KINEMATICS in DSFGS @ Z ~2 TO 6

KPC-SCALE 2D SF & KINEMATIC STRUCTURE OF MASSIVE DSFGS @ Z~2-6

MIRI SYNERGY WITH ALMA: KS-LAW IN DSFGs @ Z ~2 TO 6

KS-LAW ($\Sigma_{SFR} - \Sigma_{H2}$) @ KPC-SCALES IN MASSIVE DSFG @ Z~2-6

KPC-SCALE STUDIES OF EXTENDED MASSIVE DSFGS WITH Σ_{SFR} > 10 M_{\odot} yr⁻¹ kpc⁻²

SUMMARY

MIRI BRINGS UNIQUE CAPABILITIES FOR THE STUDY OF HIGH-Z GALAXIES

- Rest-frame near-IR coverage: low extinction + rich spectral features
- 2D (sub-)arcsec spectroscopy: spatially resolved kpc-scales
- Medium spectral resolution : velocity structures ~100 km s⁻¹
- High sensitivity: 10-100 better than Spitzer

REIONIZATION OBJECTS (Universe 4%-7% present age; z > 6.7)

- Bright Hα emitters. SFR, metal-poor versus (nearly-) metal-free
- QSOs: black hole masses

GALAXY ASSEMBLY (Universe 8%-50% present age; 1< z <6)

- The dusty IR-luminous phase of massive star-forming galaxies
- Obscured AGN and SF. Extended SF and SF laws (+ ALMA)
- Kinematics