WHICH CONSTRAINTS CAN WE GET ON DIRECTLY IMAGED EXOPLANETS WITH MIRI OBSERVATIONS ?

CAMILLA DANIELSKI,

P-O. LAGAGE, J-L. BAUDINO, A. BOCCALETTI, B. BÉZARD, R. GASTAUD

NO observations MIRI wavelength range (5-28 microns)

GIANT PLANETS: 10-100 Myr have just formed, they had not time to cool down to their final equilibrium temperature.

Theoretical Models for early cooling and contraction are poorly constrained

We apply a planetary model to see what MIRI can bring to the atmospheric characterisation.

Exo-REM

A RADIATIVE-CONVECTIVE EQUILIBRIUM MODEL FOR YOUNG GIANT EXOPLANETS (Baudino et al. 2015)

Context

- Direct imaging of young giant exoplanets with XAO and coronography: first light of SPHERE (VLT, May 2014) and GPI (Gemini South, Nov. 2013)
- Broad band photometry and low/mid resolution spectroscopy (R=5-400) between 0.95 and 2.3 μm
- Objectives
 - Simple flexible atmospheric model with few parameters to interpret these data: Exo-REM (Exoplanet Radiative-convective Equilibrium Model)
 - Tailored to model planets with $T_{\rm eff}$ = 500 2000 K
 - See : Baudino et al., accepted to A&A, arXiv:1504.04876

MODEL

Input parameters:

- T_{eff}
- g
- Elemental abundances [X/H]

Spectroscopic parameters:

- H₂-He collision-induced absorption
- Molecular line opacity from:
 - H₂O, CO, CH₄, NH₃, TiO, VO,
 Na, K

Cloud absorption:

- Fe
- Silicates (Mg₂SiO₄)
- Free parameters:
 - τ_{ref} (1.2 μm), <r>

Spectral range

 20 – 16,000 cm⁻¹ (0.63 – 500 μm)

- Radiative-convective equilibrium
- Thermochemical equilibrium

Output:

- Temperature profile *T(p)*
- Mixing ratio profiles q(z)
- Spectrum

APPLICATION OF EXO-REM TO BETA PICTORIS B IN THE NIR

Observations

- Near-infrared photometry in 8 bands $(1 5 \mu m)$
- J- and H-band low resolution spectra (GPI)

Grid of models

- Range of T_{eff} , log(g), cloud parameters

Comparison with observations

- Radius *R* determined by minimizing χ^2 between synthetic and observed data for each set of model parameters
- Best fit T_{eff} and g, with associated 1- or 2-σ error bars derived from leastsquare analysis over the grid

• Other constraints

- 0.6 < R < 2 R_{jup} (from Mordasini *et al.* 2012 evolutionary models)
- M < 20 M_{jup} (from radial velocity)

APPLICATION OF EXO-REM TO BETA PICTORIS B: PHOTOMETRIC DATA

P-O. Lagage's talk (Thursday 15:20)

name	FOV	Wavelength Range (μm)	Spectral Properties
Diffraction-limited Imaging	$74'' \times 113''$	5.6 - 25.5	9 bands
Low Res. Spectroscopy	0''.51 × 4''.7 slit	5 - 12	$\lambda/\Delta\lambda \sim 100$
Slitless Spectroscopy	7''.9 wide	5 - 12	$\lambda/\Delta\lambda \sim 100$
Phase Mask Coronagraphy	$24'' \times 24''$	10.65 - 15.5	3 bands
Lyot Coronagraphy	$30'' \times 30''$	23	one band
Medium Res. Spectroscopy	$3.44' \times 3.64''$ IFU ^a	4.9 - 28.8	$\lambda/\Delta\lambda \sim 1500 - 3500$

HD 95086B

8

HD 95086B TEMPERATURE ACCURACY WITH NIR+MIRI OBSERVATIONS

Temperature can be probed in another way...

THE QUEST FOR AMMONIA IN WARM EXOPLANETARY ATMOSPHERES

GJ 504B

 $M_P = 4 M_J$ $R_P = NA$ $T_P = 500 K$ $T_S = 6234 K$ $M_K = 4.033$ d = 2''.48

HR 8799B

-1.51e+05 -1.42e+05 -1.27e+05 -1.07e+05 -8.02e+04 -4.81e+04 -1.02e+04 3.40e+04 8.36e+04

 $M_P = 7 M_J$ $R_P = 1.2 RJ$ $T_P = 900 K$ $T_S = 7430 K$ $M_K = 5.24$ d = 1.72

VHS 1256B

$$M_P = 11.2 M_J$$

 $R_P = NA$
 $T_P = 880 K$
 $T_S = 2620 K$
 $M_K = 10.044$
 $d = 8.06$

PSF

SUMMARY

- EXO-REM a radiative convective equilibrium model that assumes thermochemical equilibrium for self luminous planets without stellar heating.
- MIRI combined with NIR measurements, can constrain the planetary temperature down to 20K.
 - > Better constrain the theoretical models
- With MIRI we finally have the opportunity to probe NH3 in a planetary atmosphere, and we already know where to look for it!
- SPHERE and GPI by 2018 will detect more interesting targets.
- Constraints for the planetary formation theories!