

Exoplanet studies with NIRISS

René Doyon, on behalf of David Lafrenière Université de Montréal October 15, 2015

INSTITUT DE RECHERCHE SUR LES EXOPLANÈTES

INSTITUTE FOR RESEARCH **ON EXOPLANETS**

- ♦ Core science team
 - René Doyon (PI)
 - Roberto Abraham
 - Laura Ferrarese
 - Lisa Kaltenegger
 - Ray Jayawardhana
 - Doug Johnstone
 - John Hutchings
 - David Lafrenière (leader)
 - Michael Meyer
 - Judith Pipher
 - Marcin Sawicki
 - Anand Sivaramakrishnan
 - Chris Willott

- Instrument team
 - Loïc Albert
 - Étienne Artigau
 - Pierre Chayer
 - Van Dixon
 - Alex Fullerton
 - Paul Goudfrooij
 - Nikole Lewis
 - André Martel
 - Swara Ravindranath
 - Kevin Volk
- Collaborators
 - Michael Ireland
 - Aleks Scholz
 - Peter Tuthill

Strong exoplanet interest

Université de Montréal RC.CRC COM DEV 2

- \diamond Two instruments in one box provided by CSA
- ♦ FGS (Fine Guidance Sensor)
 - Provides fine guiding to the observatory
 - > 0.6-5 µm IR camera. No filters, single optical train with two redundant detectors each with a FOV of 2.3'x2.3'
 - Noise equivalent angle (one axis): 4 milliarcsec
 - 95% sky coverage down to J_{AB} =19.5
- NIRISS (Near-Infrared Imager and Slitless Spectrograph)
 - ➢ 0.6-5 µm IR camera.
 - Four observing modes
 - Main science drivers
 - First Light: high-z galaxies
 - Exoplanet detection and characterization

- Specifically optimized for transit spectroscopy
 - Grism with built-in defocussing weak lens to increase dynamic range and minimize systematic "red noise" due to undersampling and flatfield errors
 - Optical implementation to the successful « scanning mode » used on HST
- Broad simultaneous wavelength range: 0.6-2.8 um
 Cross-dispersed (orders 1 and 2), no blocking filter.
- ♦ Spectral resolution: ~1000 (700 @ 1.2) um in first order
 ▶ 500-2000 across wavelength range

SOSS Hardware implementation

7

doi:10.1038/nature12888

Clouds in the atmosphere of the super-Earth exoplanet GJ1214b

Laura Kreidberg¹, Jacob L. Bean¹, Jean-Michel Désert^{2,3}, Björn Benneke⁴, Drake Deming⁵, Kevin B. Stevenson¹, Sara Seager⁴, Zachory Berta-Thompson^{6,7}, Andreas Seifahrt¹ & Derek Homeier⁸

HST data. ~30 ppm noise level, within ~10% of the photon noise limit !

49 ESLAB Meeting 15 October 2015, ESTEC

I FR

CSA ASC

♦ Standard Mode:

- ➤ Wavelength coverage: 0.6-2.8 µm
- Subarray: 256x2048 (order m=1 and 2)
- Saturation limit: J=8.0 (CDS; 70 000 e-)

♦ Bright mode

- ➢ Wavelength coverage: 1.05-2.8 µm
- Subarray: 80x2048 (m=1 only)
- Saturation limit: J=6.8

Université de Montréal

NIRISS will miss very few Earth/Super-Earths found by TESS

Figure courtesy of George Ricker (TESS PI)

Université de Montréal

RC CRC A COM DEV

Host	Name	Т _р (К)	ρ (g/cm³)	R★ (R _☉)	Expected Δf/f from atm. (ppm)				
					H ₂ -rich μ=2	H ₂ O- rich μ=18	Earth μ=29		
Hot Jupiters/Neptunes									
G0V	HD209458b	1130	0.37	1.14	700	-	-		
M3V	GJ436b	700	1.5	0.42	800	-	-		
Super Earths									
M4V	GJ1214b	600	2	0.2	2300	250	160		
K1V	HD97658b	800	3.4	0.7	150	20	10		
Earths									
M0V	K2-3b	500	4.2	0.56	120	15	10		
MOV	TESS	600	5.5	0.2	-	95	60		
M6V	NGTS	300	5.5	0.15	-	80	50		
Easy, sin	ngle visit	Doable, needs more than one visit			isit	Hard, needs several visits			
$rac{\Delta f_{ m atm}}{f} \propto$	$\frac{R_{\rm pl}H_{\rm atm}}{R_{\star}^2} \rightarrow$	$\frac{\Delta f_{\rm atm}}{f}$	$= 615 \left(\frac{10}{10}\right)$	$\left(\frac{T_{\rm pl}}{00\ K}\right)$	$\left(\frac{\mathbf{u}}{\mu}\right)\left(\frac{1\ g}{\mathbf{u}}\right)$	$\left(\frac{cm^3}{\rho}\right)\left(\frac{R}{R}\right)$	$\left(\frac{1}{2}\right)^2 \text{ppm}_{13}$		

49 ESLAB Meeting 15 October 2015, ESTEC

Université de Montréal

Model courtesy of J. Fortney

Model courtesy of J. Fortney

The power of broad λ coverage

15 October 2015, ESTEC

Université de Montréal RC-CRC COM DEV 17

Probing JWST's highest angular resolution

Simulation of 1-2 Mjup planet at 1 AU of an MOV located at 10 pc. Observing time: 3 hrs

AMI follow-up of ground-based ExAO planets

Université de Montréal RC·CRC COM DEV 21

Follow-up of β Pic b in early 2019

- The planet has entered a phase where it is too close to the star to be imaged with current imaging, it will come out only in ~2020
- But NIRISS AMI can see it in 2019
 - Star mag (3.5), planet separation (0.15"-0.18") and contrast (~7.5 mag) just in the sweet spot!

Université de Montréal RC·CRC A COM DEV 22

Important SED and astrometry measurements

- Overall exoplanet program: ~200 hr (out of 450 hr)
 - Single Object Slit-less Spectroscopy (SOSS)
 - Exoplanet spectroscopy
 - Aperture Masking Interferometry (AMI)
 - Exoplanet "imaging", photometry
- ♦ Focus on low-risk
 - ~guaranteed scientific payoff, albeit perhaps not the highest
 - ...but room for a few higher risk observations
- ♦ Demonstrate NIRISS capabilities
- \diamond In general short observations per target
- ♦ Good legacy value

# hr	# targets	What	Mode
120	10-15	Jupiters/Neptunes transit+eclipse spectro.	SOSS 0.6-2.8 um
30	~2	Small planets transit spectroscopy	SOSS 0.6-2.8 um
40	~2	Orbital phase curve spectroscopy	SOSS 0.6-2.8 um
30	5-10	Follow-up of ground-based ExAO planets	AMI
30	5	Protoplanets in transitional disks	AMI

NIRISS will provide a powerful "workhorse" transit spectroscopy capability

- NIRISS will allow detection and characterization of exoplanets at the highest possible angular resolution achievable by JWST
- Exoplanets@JWST will require >25% of JWST's observing time.

