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The double role of Supernovae

Core collpase supernova (CCSNe) are important sources of

interstellar dust
e dust forms in the expelled radioactive ejecta

The are the most important destroyers of interstellar dust
during:

- The reverse shock phase of the expansion

- during the remnant phase of the expansion

Are CCSN net producers or destroyers of interstellar
dust?

Can they produce observable amounts of dust in the early
universe?
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Grain destruction by supernova
remnants

(Temim+2015)

SN blast wave
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Supernova remnants clear all the dust
contained in # 1,000 - 2,000 Msyn of ISM gas

(Slavin, Dwek, & Jones 2015)
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Dust formation in core
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When are CCSNe net dust producers?

Rate of ISM mass L
gr'ain - SN X cleared of X nl'\J(Sl:ST:Cl"g':)S
destruction e dust by
single SNR

~ 1000 Moy X D26

Rate of het
grain - SN X dust yield
destruction rafe in CCSNe
~ 0.1 Msun

CCSN are net dust producers when D26 = 10™*
Very early universe
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How to make a dusty high-z galaxy IT:
need rising UV and efficient dust formation

(Dwek, Staguhn, Arendt et al. 2014)

Kroupa stellar
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Second constraint: Dust production

Dust mass inferred from the energy. constraint
must be produced within ~ 500 Myr
Only considered dust production by CCSN

Dust evolution models

Low7Z IMF 3
correlate the following
bexp LOO uantities:
teyxp300 T :
no grain I N\
destruction Star for'maTion rate
Stellar IMF
My(0)= 1107 Mo Stellar mass
— — — - M(0)=5x10" M,
Dust mass
Gas mass
10° Dust destruction

time (Myr) K w




Optical Depth in the early universe

For a dust mass of 10”7 Mqun

and a mass abs coef. of 10* cm? gr!
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R(kpc)?
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THE NATURE
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IN
SN1987A



: SN shock-ring interaction
Dust in SN1987A  collisionally-heated dust

Zanardo et al. 2014 Dwek et al. 2010

Larsson et al. 2011 Si“CC(Te

__ T4#2180 K

4 Ms=10° Meur
Dust that formed in the
SN ejecta
Amorphous carbon MGTSUUPG et Cll.
HST ALMA 870 um ilicate
2 oy 2011, 2015
mostly carbon
T4R20 K




Mass of dust evolved by cold accretion

Matsuura et al. 2011, 2015

Wooden et al. 1993 Wesson, Barlow, et al. 2015
Dwek et al. 1992 Amorphous carbon ~ 0.5  Maun
~ 1073 Msun of carbon dust Silicate ~ 2.4 Msur

Iron ~ 0.4 Mqun

Amorphous carbon ~0.3 - 0.5 Mg
Silicate ~0.5 - 0.07 Mgn
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Problems with this evolutionary model

4 Abundance violation
e - Uses more material (primarily C) than available in ejecta

4 Predicts no silicates from CCSN

e - featureless spectrum interpreted as evidence for the
absence of silicates

e - Silicates are an important component in Cas A spectrum
e - Silicate features absent at earaly times because of
optical depth effects

4+ Cold accretion

e - Most of the dust growth/formation occurs at T < 500 K
e - Loosely bound mantles will not survive reverse shock
o - Dust will not give rise to silicate features



Hiding the dust in
optically-thick clumps

(Dwek & Arendt 2015)

T(sil) = 610 K
T(ac) =450 K

7(20 pm) ~ 9100

Re; = 4.8 10'° em :
fixed paramefters:

M(Si), M(Mg), M(C), Re;
T(sil) = 330 K
= T(ac) =330 K free parameter: Tqust

7(20 pum) ~ 5700

g oA i 5) Spherical grains
Hes =6, 1o 1077 e Masi0,

Am carbon

T(sil) = 150 K
T(ac) =250 K

7(50 pm) = 250

R =900 e




THE MASS AND

COMPOSITION

OF UNSHOCKED
DUST IN
CAS A SNR



How much dust will survive the reverse shock?

Cas A: emission from dust

Arendt, Dwek + 2014
Ma 2 0.04 Maun  shocked dust

Md ~ 008 Msun not yet shocked dust

Wavelength (um)

Old SNR near
Galactic center

Lau et al. 2015

Md ~ 002 N\sun
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False Color Dust Emjssion

Northern Dust

Sgr A East Cloud

HII Regions
° g | ‘
0/

Ser A West

el O A

19.7 (blue) 31.5 (green) & 37.1 um (red) =



Line emn“rmg r'eglons

o Pren oo Poorady Spatial
%l 2 i decomposition
- - - of the IR dust
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o« I ; in Cas A

Arendt, Dwek + 2014

Dust emission spectra
from the different
regions




Intensity (normalized)

Determining the composition of the
unshocked dust in Cas A
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(see also Barlow et al. 2010)



THE MASS AND
COMPOSITION
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CRAB NEBULA



The Crab Nebula
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OBSERVING
GRAIN
DESTRUCTION
BY THE
REVERSE SHOCK
IN SN1987A



Observing the grain destruction phase in JWST

Dust collisionally heated
in a shocked O-rich gas.
Dust lifetime ~ 10 days

Ejecta morphology:
Ejecta heated by X-ray from
the reverse shock
(Larsson et al. 2013)

Assuming: Maust = 10 Mg
TdusT - 450 K

silicate grains
Am carbon grains




CATCHING DUST
FORMING
SUPERNOVAE

INFRARED HANDED

(looking at SN
that exploded in
the last ~ 6 years)



The evolution of the IR spectrum of SN1987A




Observing the dust formation phase with JWST

D= 1. Mpc
day 2000.




SN dust Science with JWST

4+ Observations of SN 1987A

e Grain destruction by reverse shock
e Nature of dust, silicates of carbon, in the ejecta

4 Observations of SNR
e Cas A: mass and composition of unshocked dust
e Crab Nebula: mid-IR mapping, spectroscopy?
e yield of dust that survives the reverse shock

4+ Observations of young dust-forming SNe
e looking at SNe that exploded withing the last ~ 3yrs
e initial dust yield from CCSNe
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