The Open Unive

Mapping the Distribution of Solid Icy Material in Star-Forming Regions

Dr Helen Jane Fraser The Open University

helen.fraser@open.ac.uk

On behalf of **"IDATSE - Ice Distribution Across Time & Space Epochs"** a team of' prospective' JWST observers from the ice community including **(Whittet, Pontoppidan, Boogert, Oberg, Shimonishi, Olivera, Gerrakines)** and the many Astrochemistry Group Members who contributed including **(Aleksi Suutarinnen / Jennifer Noble / Alison Craigon / Anita Dawes)**

The Open University

Why ice?

IMPACT of "cold" solid-state "stuff" on astrophysics

- Pre-stellar clouds
- Proto-planetary disks
- Comets & 'ice-teroids'
- (Exo)planets & moons
 - Extra-galactic SF

"Ethanol" (or other alcohols i.e methanol)

- COMS
- Life?
- 1st COMS z= ?

ICE = largest molecular reservoir in Universe (excluding (H₂))

In SFR SOLID H_2O = more abundant than gas-phase CO!!!!!!!

Image courtesy of K Pontoppidan

Affects gas-solid synergy (molecular reservoir (trapping)) Affects grain sticking (ice porosity = "glue") Affects reactivity (binding sites and surface area) / H₂ formation Affects mobility (deuteration exchange & outgassing)

The Open University

Bottom Line

From observations we want to know

How much ice? What type of ice? Where is it?

How do we build understanding? The Open University It's still a Remote Observations HUGE Laboratory Experiments issue where support data comes from and how it is accessed Theoretical Modelling of Chemistry / Physics Environment

JWST - advantages

Parallel observing

Spectral Coverage

Resolution

<u>Sensitivity</u>

NIRSpec: (masked) spectroscopy 1-5 μm at R=100-3000 **PLUS** MIRI: imaging (+ coronagraphy) and spectroscopy 5-28 μm at R=100-3000 NIRCam: 1-5 μm narrow and broad band imaging (including coronagraph) (slitless spectroscopy)

Spatial resolution 3-28 µm: 0.12-1.1 arcsec (21-190 AU for cloud at 150 pc distance)

van Dishoeck et al., Pacific-Chem Proceedings (2006)

The Open Univers

Methanol-The case for NIR + MIR **Spectroscopy** Needed to

Requires CO freeze-out to form Needed to form COMS

Evolution and Chemistry from multi-wavelength data: Pre-stellar

Suutarinen et al MNRAS (2015) submitted

Linking Spectroscopy to Modeling: Proto-stellar

Suutarinen et al MNRAS (2015) submitted

From NIRSpec to MIRI ...

Dawes et al MNRAS (2015) in prep

JWST – "Ice Cool"....

Coronagraphic spectrophotometry (+adaptive optics) Herbig Ae star HD 142527 3 μm 'image of disk ice band in scattered light. (Honda et al (2009)

<u>NIRCam / JWST with coronograph</u> Scattered light probes older more tenuous disks cf absorption = larger evolutionary range

JWST – "Ice Cool"....

NIRCam / JWST with coronograph

NIRSPEC + MIRI / JWST "routine" observations

ALMA / JWST "snow-line" imaging

HV Tau C Terada et al. (2007, 2012) 1X1'' FOV@0.12″ FWHM

JWST – "Ice Cool"....

NIRCam / JWST with coronograph

NIRSPEC + MIRI / JWST

Ice Mapping

NIRSPEC + NIRCam + MIRI / JWST

The Open University

Pre-stellar Cores (Interstellar Ice)

0

The Open University

No. of Observed Background Stars with Ice

CAVEAT:- Current background star ice observations trace ices well before collapse.

AKARI Slitless Spectroscopy Legacy

SPIZER STATE OF THE ART...

• Most obscured background stars ever observed in ices (A_v~40 mag), with deepest 3 μ m H₂O ice bands (Boogert et al. 2011)

Ice Mapping

Noble et al (2013) Noble et al MNRAS (2015) submitted

Ice "controls" chemistry and desorption processes.

Noble et al MNRAS (2015) submitted

What could JWST do?

B 59 star-forming core. $A_{\rm V}$ contours 5-90 mag derived from background stars [Roman-Zuniga et al. 2010]

JWST/NIRSpec Micro Shutter Array (MSA):

- 1-5 μm, R~3000
- >100 targets simultaneously
- 3'x3'field of view > AKARI (no confusion)

JWST/NIR CAM Slitless Spectroscopy mode:

- 2-5 μm, R <<< (100 is enough)
- all targets at once
- 0. 2 mJy sources
- (2 oom > Spitzer 1 oom > AKARI)

CHALLEGE = DATA REDUCTION

JWST/MIRI cluster mode:

- 5-28.3 um, R~3000
- 1 target at a time
- 0. 2 mJy sources (2 oom > Spitzer 1 oom > AKARI)

FOV Imaging (& Prism / Grism Distortion)

Dec (J2000)

Is there a critical A_v onset to ice formation?

No. of Observed Background Stars with Ice

CAVEAT:- Current background star ice observations trace ices well before collapse. JWST will ALSO have the sensitivity to study HIGHLY EXTINCTED LoS CLOSE to collapse cf. A_v ~90 background stars requires S/N=100 for ~1 mJy continuum at 3-5 µm

Can't wait...

Isotope Abundances.

Noble et al MNRAS (2015) submitted

1' @ 400 pc

What else is related to ice? DUST!!

Suutarinnen et al (2015) in prep

Cuppen et al MNRA

How to back out CH₃OH?

Noble et al (2015) in prep Suutarinnen et al (2015) MNRAS submitted

Concurrent Band Fitting AKARI (26) & VLT (28)

Suutarinnen et al (2015) MNRAS submitted

Dawes et al (2015) PCCP submitted

Wavenumber (cm⁻¹)

How does it affect water ice?

Noble et al (2015) in prep Suutarinnen et al (2015) MNRAS submitted

Absorbance

Herschel & Non-Thermal Desorption

PRESTELLAR ISM:

Hershel HIFI data - shows gas Ø water lines x100 weaker than predicted = All water (essentially) in pre-stellar cores frozen out as ice

BUT

Integrate even longer...

H₂O (g) in a COLD PRE-STELLAR CORE

Caselli et al ApJ (2012)

MODELLED by H₂O (ice) photo-desorbtion via CR induced UV photons (CR+ H₂)

