

Probing the embedded phase of star formation with JWST spectroscopy

NIRSPEC

E.F. van Dishoeck, H. Beuther, T. Greene, M. Ressler, A. Caratti o Garatti, V. Geers, K. Justtanont, P. Klaassen, O. Krause, T. Ray, C. Waelkens

Embedded protostars

IR probes dust with temperatures 100-1500 K

- Complete inventories of protostars exist out to few kpc thanks to Spitzer, Herschel, WISE, ground-based submm, ... \rightarrow large samples available

-Need NIRSPEC and MIRI IFU spectroscopy to characterize physics and chemistry on few 10 to few 1000 AU scales

Main questions

- How does matter flow from core \rightarrow disk \rightarrow star? What are the characteristics of protostars? Measure (episodic) accretion rates

- What are the properties of young disks? Evidence for accretion shocks? Disk and core fragmentation
 (→ young planets, binaries/multiples coevality)?
- What is the origin and location of chemical complexity? Composition and processing of ices? Gas/ice ratios?
- What is feedback of protostar on surroundings?
 Physics of jet/wind envelope interaction?
 Importance shocks vs UV photons? Properties of youngest outflows?
- How do these characteristics change from low- to high-mass stars and with evolutionary stage?

IR diagnostics (unique!)

- Protostar, disk: continuum
- Accretion: H I recombination
- Shock: [S I], [Fe I], [Fe II], [Ne II], H₂, H₂O, OH,...
- UV/PDR: H₂, PAHs,
- X-rays/high energy photons: [Ne II], [Ne III]
- Warm env/hot core: H₂O, HCN, C₂H₂, CH₄, CO₂ gas
- Cold envelope: ices, silicates

Combine with far-IR lines (Herschel and spectrally resolved mm data (ALMA) to answer above questions

Modeling tools and laboratory data crucial!

Why JWST?

Progress from Spitzer: spatial + spectral resolution and sensitivity

 Spatial resolution

 150pc 400pc 3kpc

 <5 μm</th>
 0.1"
 15AU 40 AU
 300AU

 5μm
 0.19"
 29AU
 76AU
 570AU

 15μm
 0.58"
 87AU
 232AU
 1740AU

 25μm
 0.96"
 144AU
 384AU
 2800AU

- Spatial resolution sufficient to resolve disks and envelopes

Sensitivity ~(sub)mJy for spectra
 High spectral resolution boosts line/continuum ratio

→ Spatially resolved characterization of protostars, envelopes, disks and outflows

Optimal use of IFUs

See MIRI PASP papers

1. Protostars and their inner envelopes

Questions

- What is physical structure warm dust? Geometry?
- Earliest stages massive star formation?

Deeply embedded Class 0 sources are predicted to have very weak mid-IR fluxes, yet several were detected with Spitzer → information on geometry

Stellar photospheric spectra

- NIRSPEC spectra of Class 0 / early Class I protostars themselves
 - Na, CO, H₂O stellar features
 - Expect heavy veiling
- Determine stellar T_{eff} and masses, radii
- Compare accretion rates from different diagnostics
 - Origin luminosity problem of protostars?
 - Variability?

Near-IR spectroscopy Class I

Connelley & Greene 2010

High mass protostars at different stages

2. Young disks in the embedded phase

Questions

- Properties of disks in embedded phase? Where does most matter enter disk?

- Fragmentation of disks and cores?

MIRI provides physical and chemical characterization

Tracing the accretion shock

Sakai et al. 2014, Ohashi et al. 2014 Hollenbach & Neufeld models

- Can we trace the accretion shock directly with [S II] and other shock tracers?
- JWST can spatially resolve accretion from outflow shocks

3. Protostellar jets and outflows

Lahuis et al. 2010

Questions

- How does protostar affect and disperse its surroundings: shocks vs UV? Evolution?
- Physics of shocks: dissociative vs non-dissociative shocks

Complete far-IR cooling budget observed with Herschel for ~100 low-mass protostars, but spatially unresolved in 9.4" spaxel

Mapping the inner envelope + outflows

Image: SMA CO 3-2 outflow contours

Jørgensen et al. 2007

Small IFU maps well matched to size of interaction region

ALMA images of outflow

Arce et al. 2013

HH 211 outflow map

Tappe et al. 2008

4. Chemistry: organics and water

Questions

- Origin of chemical complexity: ice or gas? Thermal or UV processing?
- How is water transported from clouds to disks (\rightarrow planets): ice vs gas?
- Thermal history and evolutionary state sources (gas/ice ratio)?

Building complex organics in ices

- MIRI can resolve weak ice features in critical fingerprint region of organics
- Spitzer lacked spectral resolution 5-10 μm

Öberg et al. 2011

Complex organic molecules with ALMA

Small scale chemical diversity seen on 500 AU scales: due to ice variations?

Jørgensen et al. 12

Summary

- Protostars well suited for IFU Nirspec, MIRI spectroscopy
- Single data set can address multiple questions
- 'Cluster observing' ('smart accounting') mode will greatly increase efficiency and scientific return

Harvey et al. 2007