

European Space Agency
Research and Science Support Department

Planetary Missions Division

Planetary Science Archive
PVV User Manual

SOP-RSSD-UM-004

Issue 4.1

15 May 2007

 Prepared by: D. Heather, I. Ortiz

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: ii

Distribution List

Recipient Organisation Recipient Organisation

 Change Record Sheet

Date Iss. Rev. pp. Description / Authority CR No.

23-04-04 2 2 All General updates and restructuring throughout [DH]

27-04-04 2 3 3 Installation section written (AV)

26-05-04 2 4 All Updates following MEX test and release of V1.0

14-07-04 2 5 4 and
7

Minor updates in preparation for SMART-1 end-to-
end test and after updates to release 1.05 of PVV

21-10-04 2 6 All Updated document with information for the official
release of PVV 2.0

2-05-05 3 0 All Updated document for PVV release 2.2.0 including
the ‘pvv build’ and ‘pvv upload’ functionality for the
release concept.

12-05-05 3 1 All Updated to include the new ‘pvv freeze’
functionality, split from the ‘pvv build’ command

05-02-07 4 0 All Updated for the PVV 2.8 with various new
functionality

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: iii

Table of Contents

1. INTRODUCTION .. 4
1.1 SCOPE... 4
1.2 CONTENTS ... 4
1.3 READERSHIP .. 4
1.4 ACRONYMS.. 4
1.5 APPLICABLE DOCUMENTS .. 4

2. OVERVIEW – WHAT IS THE PVV TOOL? ... 5

3. INSTALLATION GUIDE ... 5
3.1 SOFTWARE REQUIREMENTS.. 5
3.2 NEW INSTALLATION.. 5
3.3 UPDATE TO THE LATEST VERSION. ... 6
3.4 THE CONFIGURATION FILE – PROXY SERVER SETUP AND MEMORY ... 6

4. DETAILED USER GUIDE AND LIST OF USER COMMANDS / OPTIONS 7
4.1 PVV SCAN – THE DATASET IMAGE ... 8
4.2 COMMANDS AND COMMAND OPTIONS .. 8

5. QUICK STEP-BY-STEP GUIDE TO VALIDATING A DATASET .. 21

6. GUIDE TO USING THE PVV WITH THE RELEASE CONCEPT... 21
6.1 PVV COMMANDS TO USE WHEN USING THE RELEASE CONCEPT .. 22

6.1.1 Checking your first Release [Release 0001, Revision 0000] ... 23
6.1.2 Checking your second Release [Release 0002, Revision 0000]... 23
6.1.3 Making a Revision to a Release [e.g. Release0001 Revision0001] ... 24

6.2 MANUALLY CONSTRUCTING A DELTA ARCHIVE CONTAINING A GIVEN RELEASE / REVISION 25
6.2.1 Manually constructing your first Release [Release0001 Revision0000] 25
6.2.2 Manually constructing your second Release [Release0002 Revision0000]............................ 25
6.2.3 Manually constructing a Revision [e.g. Release0001 Revision0001] 26

7. IMPLEMENTATION OF THE PSA AND MISSION SPECIFIC DICTIONARIES................. 26
7.1 THE ‘PSA DICTIONARY’... 26
7.2 MISSION SPECIFIC DICTIONARIES... 27
7.3 DICTIONARY VERSIONING .. 27

8. ERRORS – FORMATTING AND TYPES .. 28

9. FUTURE RELEASES – FEATURES YET TO BE IMPLEMENTED ... 31

10. TYPICAL PROBLEMS AND SOLUTIONS (FAQ) .. 31

11. PVV USER SUPPORT HELPLINE.. 34

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 4

1. Introduction

1.1 Scope
This document describes the installation and use of the ‘PSA Volume Verifier’ (PVV)
tool used for the validation and delivery of a scientific dataset for ingestion to the
Planetary Science Archive (PSA).

1.2 Contents
This document contains instructions on how to install and use the ‘PSA Volume Verifier’
(PVV) tool used for the validation and delivery of a scientific dataset for ingestion to the
Planetary Science Archive (PSA). After an introduction and overview of the tool in
Sections 1 and 2, the installation for both Unix and Windows platforms is covered in
Section 3. This is followed by a detailed users guide and list of commands and options
in Section 4, and a quick step-by-step guide to validating a dataset with the PVV for
more experienced users in Section 5. Section 6 describes how to use the PVV with
datasets following the Release Concept [AD6]. Section 7 outlines the implementation of
the PSA and Mission Specific dictionaries. Section 8 outlines the error formatting and
messages thrown by the PVV, and Section 9 details some features that have yet to be
completed in the current version of the PVV. Finally, Section 10 reviews the frequently
asked questions and some common problems and solutions.

1.3 Readership
This document will be of use to any instrument team member wishing to use the PVV
tool to validate any aspect of their dataset before delivery, or to any member of the
Archive team required to test and validate data sets and labels prior to data ingestion.

1.4 Acronyms
PSA Planetary Science Archive
PVV PSA Volume Verifier Tool

PDS Planetary Data System
ESA European Space Agency
ESTEC European Space and Technology Center in Noordwijk, The Netherlands
RSSD Research and Scientific Support Department of ESA

PI Principal Investigator

1.5 Applicable Documents
AD1 Planetary Data System – National Space Science Data Center Memorandum of

Understanding, 13 Jan 1994.

AD2 Planetary Data System Data Preparation Workbook, JPL D-7669, Part 1, Version 3.1, 17
Feb 1995.

AD3 Planetary Data System Standards Reference, JPL D-7669, Part 2, Version 3.6, 1 Aug
2003.

AD4 Planetary Science Data Dictionary Document, JPL D-7116, Revision E, 28 Aug 2002

AD5 PVV Error and Warning List, SOP-RSSD-LI-007, Version 1.9, 1 June 2004.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 5

AD6 Planetary Science Archive Experiment Data Release Concept Technical Proposal, SOP-

RSSD-TN-015, Issue 1.15 2 May 2005.

2. Overview – What is the PVV Tool?
The PVV is a tool constructed by the PSA team to allow instrument teams from all of
ESA’s planetary missions to check their datasets before they are delivered to the PSA
database for ingestion into the long-term archive. The tool is run from the command
line, and is currently supported on Solaris, Linux and Windows XP environments.

The tool allows a user to verify PDS compliance of a label, and validates all aspects of
the data set structure / content prior to delivery to the PSA. The PVV will be
systematically used by the PSA team to check data sets as part of the ingestion process
to the Planetary Science Archive (PSA).

The PVV tool will allow for smooth and easy validation and ingestion of PDS compliant
planetary data sets (e.g. data from Mars Express, SMART-1, Cassini-Huygens,
Rosetta) into the PSA.

3. Installation Guide

3.1 Software Requirements
The PVV tool requires Java version 1.4.0 or above in order to run successfully. You
must set your JAVA_HOME environment variable to the location of your Java
installation. The PVV also requires a working network connection (access to an internet
connection) in order to query the dictionary server.

3.2 New Installation
You will be provided with a tar.gz file for the PVV tool (e.g. PVV_1.0.tar.gz). The
installation of the PVV then requires three basic steps:

- The unpacking of the PVV tar.gz archive on your local disk:

• UNIX: >cd /home/<username>/<my_programs>

>gunzip PVV_1.0.tar.gz

>tar –xf PVV_1.0.tar.gz

>ln –s PVV_1.0/ pvv #create a link to the installation

• WIN-XP: In an explorer window, double click on the file PVV_1.0.tar.gz.
Extract all files to say C:\PVV or any other disk/directory that you want
(if you do make sure you change all further reference to C:\PVV below
to the path you selected). Please do not choose a directory path with
spaces in its name.

- Create an environment variable PVV_HOME that points to the directory where
you installed the PVV and modify your PATH variable to point to the
PVV_HOME/bin directory:

• UNIX: open your ~/.tcshrc (or which ever shell start-up script you have)
and add at the bottom the lines:

setenv PVV_HOME /home/<username>/<my_programs>/pvv

setenv PATH $PATH:$PVV_HOME/bin

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 6

• WIN-XP: Click ‘Start’ (bottom left hand corner of screen) -> ‘Control

Panel’ -> System -> Advanced (Tab) -> ‘Environment Variables’

In the window under the user variables panel click the ‘New’ button and
enter:

Variable Name= PVV_HOME

Variable Value=C:\ PVV\PVV_1.0

Click ‘OK’. Click the ‘New’ button under the user variables panel again
and enter:

Variable Name= PATH

Variable Value=%PVV_HOME%\bin

Note if you already have a PATH variable then just edit it and append
the value above preceded with a ‘;’.

- Change the permissions of files $PVV_HOME/bin/* to executable.

• UNIX: > chmod +x $PVV_HOME/bin/*

• WIN-XP: In an explorer window select all files in the directory
C:\PVV\PVV_1.0\bin and right click on them. Select ‘properties’ on the
menu that pops up. Select your user name in the top panel and make
sure you have the ‘Read & execute’ permissions box checked in the
‘Allow’ column.

You are now ready to start using the PVV.

3.3 Update to the latest version.
If you installed the PVV the first time following the above ‘New Installation’ procedure,
then all you have to do is run ‘pvv update PVV_X.X.tar.gz’ (where ‘X.X’ denotes a future
release number of the PVV) in a shell terminal (DOS terminal in windows) and the PVV
will automatically install itself in a new directory (in the same directory where the
previous installation was done) and reset your environment variables so that you are
ready to use it straight away. Make sure you place the new tar.gz file in the installation
directory for the previous version (i.e. one directory above your ‘PVV_HOME’ directory).
 Windows users should then restart their DOS window for the environment variables to
take effect.

3.4 The Configuration File – Proxy Server Setup and Memory
In order to allow connection to the dictionary server via a proxy server, the PVV has a
configuration file which allows the user to input their proxy server details. The
configuration file is a simple text file found in:

 $PVV_HOME/ext/pvv.properties

If a proxy server is to be used, the user should use their preferred text editor to edit this
‘pvv.properties’ configuration file and include details of their proxy server in the relevant
section:

 ###########################

N.B. For Windows XP users, please ensure that the datasets you are testing are in directories
with NO SPACES in their pathnames, otherwise the PVV will fail.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 7

PROXY SERVER SETTINGS #

###########################

Set the following properties if you are behind a firewall

and cannot access the internet

uncomment the next line and replace the url with your proxy's url

if your proxy is on a different port than 80, then also set the

the port property accordingly

#proxyHost=www.yourproxy.com

#proxyPort=8080

If your proxy server requires authentication, you should also use the following two
keywords in the pvv.properties file:

proxyPassword = my password

proxyUserName = my login name

Similarly, within this configuration file is an option for the user to increase the amount of
memory for the PVV to run. It is recommended that users initially leave this value set to
the default 64Mb, but if they experience any problems with the error
java.lang.OutOfMemoryError then they should try to increase this value:

##############################

RUN-TIME MEMORY SETTINGS #

##############################

this is the default memory allocated to the pvv at run time

if you get errors such as java.lang.OutOfMemoryError, then

try to increase this value to 128m, or more if you still

get the error (note it is important to follow the value with

the letter 'm' ie for MegaBytes)

maxMemory=64m

The final use of the configuration file is to set any default options you wish to run with
the commands. This is described within the pvv.properties file and in Section 4.2.

4. Detailed User Guide and List of User Commands / Options
The PVV tool is run from the command line with the following general syntax:

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 8

pvv {command} -D[command options] [argument]

Where:

{command} is a single word that instructs the PVV to process the dataset in a
specific way. The {command} must be the first argument on the line.
There are several different {commands} that can be run, depending on
the type of validation to be carried out.

[command options] are optional. The command options vary depending on the
{command} being used. Each option must have the '-D' prefix, and be
limited with the '=' sign.

[argument] is by default the current directory in most cases. However, it is
sometimes required to be given as a file, depending on the command
and options being used.

An example command line could therefore be:

pvv label -DdataSetID=GIO-C-GRE-3-RDR-HALLEY-V1.0 DATA/PRODUCT_1.LBL

In this case the {command} is ‘label’, which instructs the PVV to verify a label file.

The label file to be validated is specified in the [argument] field, and is given as
‘PRODUCT_1.LBL’ in the DATA directory.

The [command option] datasetID is also set in this example. This checks that the
DATASET_ID in the label matches the name provided in the command line (GIO-C-
GRE-3-RDR-HALLEY-V1.0 in this case).

A full list of commands and command options is provided in Section 4.2, along with
details on what each command is used for.

4.1 PVV scan – The Dataset Image
Before you can do any dataset validation using the PVV, the software has to build an
internal image of the dataset being tested. This is done by running the ‘pvv scan’
command from the root directory of the dataset. The image created is stored as a
hidden xml file called ‘.PDSVOLUME.XML’ in the root directory, and provides a
structural breakdown of the dataset being tested. This is then used by the PVV to verify
the dataset.

N.B. if any additions or changes are made to the dataset structure (e.g. altering the
directory structure or changing directory or file names), you MUST re-run the ‘scan’
command in order to rebuild an image of the new dataset before you start verifying it.
This must be done every time you change your dataset structure.

4.2 Commands and Command Options
Below is a full list of the commands available in the PVV in alphabetical order, and the
various command options and arguments permitted for use with each command.

N.B. If at any time you need to see a list of commands and options, use:
‘pvv help’

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 9

browse - verifies label files in the BROWSE/QUICKLOOK directory.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To verify the contents of the BROWSE directory, without seeing any warnings
thrown by the PVV, one would type:

pvv browse –Dwarn=off

build - This command builds a previously validated delta release or revision and packs
the delta into a tar.gz archive. You will be prompted for a directory in which to place the
‘tar.gz’ file, and for a filename. By default, the directory will be one above the root
directory of the data set, and the filename for the tar.gz file will be
[DATASET_ID]_RX_RY.tar.gz where the RX is the Release number and RY is the
Revision number being built. The default values will be accepted simply by pressing
<enter> without typing a new value. The filename you provide does not need the
‘tar.gz’ suffix (see examples below).

To complete the transfer of the release or revision to the PSA, the tar.gz file must be
uploaded using either the ‘pvv upload’ command, or manually via any ftp client
(recommended).

This command is only applicable if you are using the Release Concept [AD6]. See
Section 6 for details.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default

revision=[0000-9999] - sets the revision number, 0000 is the default

stopAfter=[xxx] - number of errors to report before stopping, default 50

{argument} the dataset directory path. Current directory by default.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 10

Example 1: To freeze release 0002 of your dataset in the directory /local2/data/psa/MY-
DATASET-V1.0 after a successful verify, and build a delta archive from it ready for
delivery, one would go to the directory /local2/data/psa/MY-DATASET-V1.0 and type:

pvv build –Drelease=0002

You will then be prompted to enter a directory in which to place the tar.gz file, and a
filename. For the purposes of this example, we will <press enter> to accept the default
values:

 --

 Building DataSet

 --

Please enter the full path of the directory where you want to output the data

[e.g. /local2/data/psa/]:

<press enter to accept default above>

Please enter the file name to be saved as

[e.g. MY-DATASET-V1.0_R2_R0]:

<press enter to accept default above>

This may take a few minutes. Please wait...

MY-DATASET-V1.0_R2_R0.tar.gz built successfully in 303 seconds

Please run 'pvv upload' command to physically transfer the data to the

PSA or use your favorite FTP tool (recommended)

EXECUTION SUCCESSFUL

N.B. This command should be used to automatically freeze a release AND build a
delta archive containing files from that release / revision. A user wishing to only
freeze a release / revision and then MANUALLY construct a delta archive from
this should use the ‘pvv freeze’ command (see Section 6.2 for details of how to
manually create a delta archive).

N.B. The file produced by the ‘pvv build’ command will contain just those files from the
specified release or revision in the data set. For example, if you have a release=0002
which contains just 10 new data files, only those 10 files will be packed into the tar.gz
archive when you use the ‘pvv build –Drelease=0002’ command.

calib - verifies label files in the CALIBRATION directory.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 11

release=[0001-9999] - sets the release number, 0001 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To verify the labels in the CALIB directory, one would type:

pvv calib

catalog - checks a single catalog file.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the path to the catalog file. No default value.

Example: To check the TARGET.CAT file, move into the CATALOG directory and type:

pvv catalog TARGET.CAT

catalogs - verifies all the catalog files and their integrity.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 12

Example: To check all catalogs in your dataset, from the root directory of the dataset
type:

pvv catalogs

--
check - this will do a preliminary check on the internal image constructed from the initial
scan. This verifies the dataset structure.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

[argument] the dataset directory path. Current directory by default.

Example: To check a dataset with warnings switched off, one would type:

pvv check –Dwarn=off

docs - verifies label files in the DOCUMENT directory.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To check the DOCUMENTS directory without seeing any warnings, type:

pvv docs –Dwarn=off

freeze - This command allows a user to 'freeze' a dataset in a static 'transferred' state,
allowing work to be carried on a new release or a revision of a 'transferred' release.

This command is only applicable if you are using the Release Concept [AD6]. See
Section 6 for details.

[command option]s for this command are:

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 13

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default

revision=[0000-9999] - sets the revision number, 0000 is the default

stopAfter=[xxx] - number of errors to report before stopping, default 50

{argument} the dataset directory path. Current directory by default.

Example: To freeze release 0002 of your dataset after a successful verify, but NOT
build a delta archive, one would type:

pvv freeze –Drelease=0002

N.B. Once you have run the ‘pvv freeze’ command, you will NOT be able to run
the ‘pvv build’ or ‘pvv upload’ commands on your data set as the XML file will be
frozen. You will therefore have to manually build the delta archive containing all
files in that release / revision, and then manually transfer that archive to the PSA
(see Section 6.2 for details of how to manually create a delta archive).

To automatically create the delta archive using the PVV, you can use the ‘pvv
build’ command described below.

gazet - verifies label files in the GAZETTER directory.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To check the gazetter directory, viewing a maximum of 10 errors, one would
move to the dataset root directory and type:

pvv gazet –DstopAfter=10

help – Returns a list of the possible commands and options.

[command option]s for this command are:

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 14

{argument} [keyword | object name] will print a description of that odl object as it is
defined in the PSA dictionary.

Example 1: To find the definition and description of the INSTRUMENT_NAME keyword
in the PSA dictionary, one would type:

pvv help instrument_name

Example 2: To get a full listing of all of the possible PVV commands and their
corresponding options and arguments, one would simply type:

pvv help

index - constructs the main index files (INDEX.TAB, INDEX.LBL and INDXINFO.TXT)
from the 'scan'ned and 'check'ed datasets.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

[argument] the dataset directory path. Current directory by default.

Example: To construct an INDEX.TAB, INDEX.LBL and INDXINFO.TXT file for a
dataset, one would type:

pvv index

indexes - constructs both the main and browse index files from the 'scan'ned and
'check'ed datasets.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

[argument] the dataset directory path. Current directory by default.

Example: To construct main and browse index files for a dataset, without seeing any
warnings thrown by the PVV, one would type:

pvv indexes –Dwarn=off

label - checks a single label file. [command option] for this command are:

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

dataSetID=[NAME] - set this if you want the dataset ID to be validated
in the label file

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 15

productID=[NAME] - set this if you want the product ID to be validated in
the label file

isData=[true/false] - set this to false if the label file is not a data product
label. True by default

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

[argument] the path to the label file. No default value.

PLEASE NOTE:

- If your data set contains ‘FMT’ files in a LABEL directory, these will need to be
copied into the current directory when testing an individual label file. This is
NOT the case when testing all label files using the ‘pvv labels’ command, only if
you are testing an individual file using ‘pvv label’.

- The PVV automatically detects whether the label you are testing is attached or
detached.

Example 1: To check a file MYLABEL.LBL which is not a data product label (e.g. a
document label), one would go to the directory containing the label and type:

pvv label MYLABEL.LBL –DisData=false

Example 2: To check an attached label on a product called MYPRODUCT.DAT, and to
limit the number of errors shown to 20, one would go to the directory containing the
product and type:

pvv label MYPRODUCT.DAT –DstopAfter=20

Example 3: To check a label on a product called MYPRODUCT.DAT, which points to a
format file ‘MY_FORMAT.FMT’ in the LABEL directory, first copy the
‘MY_FORMAT.FMT’ file into the same directory as the label being tested. Then run the
label command as normal:

pvv label MYPRODUCT.DAT

labels - verifies all the product label files. It requires that the index file be built first. It
will also verify any user created index files that have been ‘scan'ned.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 16

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To check all labels in a dataset, listing up to 100 errors and turning off
warnings, one would type:

pvv labels –DstopAfter=100 –Dwarn=off

others - verifies label files in the DOCUMENT, CALIBRATION, LABEL, GAZETTER,
and BROWSE/QUICKLOOK directories.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(currently checks releases and revisions in the BROWSE directory only
– see Sections 6 and 9)

revision=[0000-9999] - sets the revision number, 0000 is the default
(currently checks releases and revisions in the BROWSE directory only
– see Sections 6 and 9)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To validate the label files in the DOCUMENT, CALIBRATION, LABEL,
GAZETTER and BROWSE directories, without seeing any warnings thrown by the PVV
and limiting the errors to 15, one would type from the root directory:

pvv others –Dwarn=off –DstopAfter=15

pack - packs an entire dataset into a tar.gz archive. N.B. You must be in the directory
ONE ABOVE YOUR ROOT DIRECTORY for this command to run successfully.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

{argument} the dataset directory path. Current directory by default.

Example: To construct a ‘tar.gz’ file of your dataset, from one directory above the root
directory type:

pvv pack ROOT_DIRECTORY

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 17

qlindex - constructs the browse index files (BROWSE_INDEX.TAB and
BROWSE_INDEX.LBL) from the 'scan'ned and 'check'ed datasets. These files are
required if you have browse products in your dataset.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

[argument] the dataset directory path. Current directory by default.

Example: To construct a BROWSE_INDEX.TAB and BROWSE_INDEX.LBL for a
dataset, one would type:

pvv qlindex

scan - the PVV will scan the dataset and build an internal image which it will use for
further verification (see Section 4.1).

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

release=[0001-9999] - sets the release number, 0001 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

[argument] the dataset directory path. Current directory by default.

Example: To scan a dataset and show the first 100 warning or error messages, one
would type:

pvv scan –DstopAfter=100

status – This command compiles a brief report of the release/revision status of the
dataset. By using the –Drelease and/or –Drevision options you can retrieve detailed
information about the products in each delivery, and the status of the testing of each
release or revision.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 18

release=[0001-9999] - sets the release number, 0001 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

{argument} the dataset directory path. Current directory by default.

Example: To check the status of your release 0002, revision0001, and to see if products
are successfully scanned, verified or even transferred, you would type:

pvv status –Drelease=0002 –Drevision=0001

unpack - unpacks a tar.gz dataset archive.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

{argument} the dataset archive file (tar.gz). No default value.

Example: To unpack a packed ‘tar.gz’ dataset called
’MY_GLORIOUS_DATASET.tar.gz’, from the directory containing the file, one would
type:

pvv unpack MY_GLORIOUS_DATASET.tar.gz

update - This command automatically updates the PVV software to a newer version,
unpacking the new ‘tar.gz’ file and updating the environment variables.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

stopAfter=[xxx] - number of errors to report before stopping, default 50

{argument} the installation directory path. Current directory by default.

Example: To update your PVV installation, place the new ‘PVV_XX.tar.gz’ file in the pvv
installation directory and from there, type:

pvv update PVV_XX.tar.gz

upload – This command uploads a given file to the PSA upload ftp area.

[command option]s for this command are:

no options are available for this command

{argument} The full path and filename to upload.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 19

Example: To upload a tar.gz archive produced using the ‘pvv build’ command or any
tar.gz file containing your data set ready for delivery, type:

pvv upload FULL_PATH/MY_FILENAME.tar.gz

N.B. It is not recommended to use this command to transfer your data to the PSA.
Instead, it is strongly recommended you use your preferred FTP client and
transfer the file(s) manually.
You will NOT be able to run ‘pvv upload’ if you have used the ‘pvv freeze’
command on a release or revision. Please use your preferred ftp client to upload
your release / revision instead.

verify - This is the absolute PVV test on a dataset. It will execute sequentially the
commands ‘check’, ‘catalogs’, ‘labels’, and ‘others’, as well as carrying out an integrity
check between label and catalog files.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

revision=[0000-9999] - sets the revision number, 0000 is the default
(only applicable if you are using the Release Concept [AD6]. See
Section 6 for details)

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To verify your dataset ready for delivery but limiting the errors thrown to 30,
one would type:

pvv verify –DstopAfter=30

version – This simply displays the version of the PVV software currently running.

[command option]s for this command are:

no options are available for this command

{argument} no arguments are available for this command.

Example: To display the version of the PVV being used, type:

pvv version

xlabels - verifies label files in the LABEL directory.

[command option]s for this command are:

warn=[on/off] - turns warning messages on or off. The default is ‘on’.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 20

info=[on/off] - turns information messages on or off. The default is ‘off’.

release=[0001-9999] - sets the release number, 0001 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details).

revision=[0000-9999] - sets the revision number, 0000 is the default
(Currently not fully implemented. See Section 6 and Section 9 for
details).

stopAfter=[xxx] - number of errors to report before stopping, default 50

dictionary=[x.y] – version of the dictionary to use when validating
keywords. See Section 7.3 for details.

{argument} the dataset directory path. Current directory by default.

Example: To verify all labels in the LABEL directory, from the root directory type:

pvv xlabels

N.B. You can use the $PVV_HOME/ext/pvv.properties file to set properties permanently
and thus configure your PVV tool without having to constantly flag them on the
command line. These take the form of ‘propertyName = propertyValue’, e.g. adding
‘stopAfter=100’ to the file would run all commands to a maximum of 100 errors.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 21

5. Quick Step-by-Step Guide to Validating a Dataset
The steps required to check one dataset and transfer it to the PSA are:

• Go to the dataset root directory.

• Run ‘pvv scan’. This creates an xml file in the directory, with an image of the
dataset.

• If your dataset has no tables in the INDEX directories, pvv scan will complain.
Run ‘pvv index’, and then re-run ‘pvv scan’ to build the dataset image.

• Run ‘pvv catalogs’ to check all of the catalogues.

• Run ‘pvv labels’ to check all of the labels.

• Run ‘pvv others’ to check the DOCUMENT, SOFTWARE, etc. directories.

• Run ‘pvv verify’, which will complete all the procedures listed above again, but
will additionally check for consistency between labels, catalogues, etc.

• If you are using the Release Concept [AD6] and are preparing a new release or
revision:

Either:

Run the ‘pvv build’ command to create the delta archive.

Or:

Run the ‘pvv freeze’ command to freeze the release and then manually
construct your delta archive for delivery (see Section 6.2 for details of
how to manually create a delta archive)

• If you are not using the Release Concept, and want to pack the entire data set
to deliver to the PSA:

cd .. and then type ‘pvv pack ROOT_DIRECTORY_NAME’. This will pack your
dataset into a tar.gz file ready to transfer to the PSA

• Use your preferred ftp client or ‘pvv upload’ to transfer your dataset to the PSA.

TIP: When running PVV, a lot of warnings could be sent to the terminal, and the user
can get confused. You can switch the warnings off by using the ‘-Dwarn=off’ option at
the command line. For example, you can check the labels running ‘pvv labels –
Dwarn=off’.

For checking an individual label file, the easiest way is go to the DATA directory where
the label resides, and run ‘pvv label [label.lbl] –Dwarn=off’, where [label.lbl] is the label
filename. The same applies for catalogs: ‘pvv catalog [catalog.cat] –Dwarn=off’.

6. Guide to Using the PVV with the Release Concept
This Section describes how to build your dataset and use the PVV to test your dataset if
you are using the Release Concept described in [AD6]. If you do not use this concept
for your deliveries, then this section is not applicable to you.

N.B. If at any time you need to see a list of commands and options, use:
‘pvv help’

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 22

There are some important rules you must follow in order for the PVV to work
successfully while you build your dataset using the Release Concept (for full details, see
the Release Concept document [AD6]):

- You must construct your dataset incrementally. In other words, if you already
start testing using data from several Releases, you must first construct the
dataset for Release=0001 and PVV it, then add Release=002 and PVV it etc.,
until the complete dataset is tested, up to the current Release.

- All Revisions made to a single Release are cumulative. In other words:

i. In Release0001, Revision0000 of a dataset: Product X is updated and
delivered as Release0001 Revision0001

ii. In Release0001, Revision0001 of the dataset: later updates to different
data (e.g Product_Y or Document_Z). Although this is the first revision
of these specific products, it is the second revision to this Release, and
so these should be delivered as Release0001, Revision0002.

- If a new document or ‘non-DATA’ file is to be delivered (i.e. a file not in the
DATA, CALIB or BROWSE directory), it should be delivered as part of the latest
Release. For example, if you are ready to deliver Release 0004 of a dataset,
and you have also decided to include a new document to the DOCUMENT
directory, this document should be delivered as Release 0004 as well, even
though it is the first delivery of this document. This way, the document can be
checked as part of the overall release using the PVV.

- If you need to deliver a new ‘non-DATA’ file between the routine release
deliveries, it should be delivered as a Revision of the most recent Release. For
example: you have delivered Release 0004 Revision 0000, and you now want
to add a new file to the dataset. You can do this by delivering this product as
Release 0004 Revision 0001.

[N.B. The DOCUMENTS directory on the online database will not take account
of release or revision IDs in the labels. The latest copies of ALL documents will
always be delivered to the end user from the online PSA archive. Using the
Release ID in the above example simply allows the PVV to check the file as part
of the overall delivery].

6.1 PVV commands to use when using the Release Concept
The following step-by-step procedure should be followed when testing your Releases
using the PVV.

The PVV is designed to test a dataset as it grows from release to release. It is therefore
very important that you run the PVV on each and every release and that you build up
your dataset one release at a time.

IMPORTANT NOTE:
The XML data set image file contains the creation time of the individual files of
your dataset as time stamps after the ‘pvv freeze’ or ‘pvv build’ command (see
below). In case of moving data products in and out of a file system, the user
therefore has to maintain the creation times of all the files involved.
On Solaris e.g. the ‘mv’ command preserves the creation time of a file and should
be used instead of making a copy using the ‘cp’ command.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 23

6.1.1 Checking your first Release [Release 0001, Revision 0000]
The steps required to check the first release [Release0001 Revision0000] and transfer it
to the PSA are:

o Go to the dataset root directory.

o Run ‘pvv scan –Drelease=1’. This creates an xml file in the directory, with an
image of the entire dataset.

o If your dataset has no tables in the INDEX directories, pvv scan will complain.
Run ‘pvv index’, and then re-run ‘pvv scan –Drelease=1’ to build the dataset
image again.

o Run ‘pvv catalogs’ to check all of the catalogues.

o Run ‘pvv labels –Drelease=1’ to check all of the labels.

o Run ‘pvv others’ to check the DOCUMENT, SOFTWARE, etc. directories.

o Run ‘pvv verify –Drelease=1’, which will complete all the procedures listed
above again, but will additionally check for consistency between labels,
catalogues, etc.

o If you want to automatically create a delta archive of your release for
delivery:

 Run ‘pvv build –Drelease=1’. This will freeze your dataset and
generate a ‘tar.gz’ file containing all data in release1 ready for delivery
to the PSA. Freezing your XML file for Release1 will allow you to build
new releases on top of this.

o If you want to freeze your release and then MANUALLY create a delta
archive of your release for delivery (Section 6.2):

 Run ‘pvv freeze –Drelease=1’. This will freeze release 1 of your
dataset. After this you will have to manually construct a delta archive
containing those files relevant to the release and manually transfer it to
the PSA. Freezing your XML file for Release1 will allow you to build
new releases on top of this.

o Run ‘pvv status –Drelease=1’ to get a report on the status of your first release.

o Either run ‘pvv upload’ or use your preferred ftp client to transfer your dataset to
the PSA.

6.1.2 Checking your second Release [Release 0002, Revision 0000]
The steps required to check the second release [Release0002 Revision0000] and
transfer it to the PSA are:

o Go to the dataset root directory.

o Run ‘pvv scan –Drelease=2’. This builds upon the existing xml file from
release1, adding those files that have been added to the dataset in this release.

Please ensure that you deliver us ALL releases and revisions. If you are testing release
1 revision 1 and then release 1 revision 2 before your next delivery, please make sure
that BOTH revisions are sent to us as separate files.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 24

o If you have not already done so, you need to re-build the index tables in the

INDEX directory. Remove the old files and run ‘pvv index’, then re-run ‘pvv
scan –Drelease=2’ to build the dataset image again.

o Run ‘pvv labels –Drelease=2’ to check all of the labels added in Release2.

o If you have included any new non-DATA files (e.g. software, documents etc)
then you should also run ‘pvv others –Drelease=2’.

o Run ‘pvv verify –Drelease=2’, which will complete all the procedures listed
above again, but will additionally check for consistency between labels,
catalogues, etc. for all products added in Release2.

o If you want to automatically create a delta archive of your release for
delivery:

 Run ‘pvv build –Drelease=2’. This will freeze your dataset and will pack
only those products / labels that are part of release2 into a ‘tar.gz’
file ready for delivery to the PSA.

o If you want to freeze your release and then MANUALLY create a delta
archive of your release for delivery (Section 6.2):

 Run ‘pvv freeze –Drelease=2’. This will freeze release2 of your
dataset. After this you will have to manually construct a delta archive
containing only those files relevant to release2 and manually transfer
it to the PSA.

o Run ‘pvv status –Drelease=2’ to get a report on the status of your second
release.

o Run ‘pvv upload’ or use your preferred ftp client to transfer your dataset to the
PSA.

6.1.3 Making a Revision to a Release [e.g. Release0001 Revision0001]
The steps required to check a revision to a release [e.g. Release0001 Revision0001]
and transfer it to the PSA are:

o Go to the dataset root directory.

o Run ‘pvv scan –Drelease=1 –Drevision=1’. This builds upon the existing xml
file from all releases, changing the details of the file(s) that have been revised
from Release1.

o If you have not already done so, you need to re-build the index tables in the
INDEX directory. Remove the old files and run ‘pvv index’, then re-run ‘pvv
scan –Drelease=1 –Drevision=1’ to build the dataset image again.

o Run ‘pvv labels –Drelease=1 –Drevision=1’ to check all of the labels in this
revision.

o Run ‘pvv verify –Drelease=1 –Drevision=1’, which will complete all the
procedures listed above again, but will additionally check for consistency
between labels, catalogues, etc. for all products in this revision.

o If you want to automatically create a delta archive of your revision for
delivery:

 Run ‘pvv build –Drelease=1 –Drevision=1’. This will freeze your your
XML file and will build a ‘tar.gz’ file containing only those files that are
part of your release1 revision1, ready for transfer to the PSA.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 25

o If you want to freeze your release and then MANUALLY create a delta

archive of your release for delivery (Section 6.2):

 Run ‘pvv freeze –Drelease=1 –Drevision=1’. This will freeze your XML
file. After this you will have to manually construct a delta archive
containing the release1 revision1 data and manually transfer it to the
PSA.

o Run ‘pvv status –Drelease=1 –Drevision=1’ to get a report on this revision.

o Run ‘pvv upload’ or use your preferred ftp client to transfer your dataset to the
PSA.

N.B. At any time, you can run ‘pvv status’ to get a report on the release and
revision status of your dataset. To get an update on the status of a given
release or revision, you can type ‘pvv status –Drelease=x –Drevision=y’
where ‘x’ and ‘y’ represent the release and revision numbers you are
interested in.

6.2 Manually constructing a delta archive containing a given release /
revision

If you are using the release concept [AD6] and have decided not to use the ‘pvv build’
command to automatically generate a delta archive, then you will have to freeze your
archive using the ‘pvv freeze’ command and then manually construct your own delta
archive to transfer to the PSA. In order for the PSA to successfully ingest this into your
existing data set structure, you will need to ensure that the correct files are in the delta
archive you generate. The following sections describe the requirements for this.

6.2.1 Manually constructing your first Release [Release0001 Revision0000]
For your first release, you will need to pack the entire data set together into a single file
(e.g. tar.gz or tar.bz2). This will then have to be manually transferred to the PSA using
your preferred ftp client.

6.2.2 Manually constructing your second Release [Release0002 Revision0000]
For your second release, you will need to pack the following files together into a single
file (e.g. tar.gz or tar.bz2):

- All products and product labels from Release2

- All *.TXT files (e.g. CALINFO.TXT, DOCINFO.TXT etc)

- The entire INDEX directory (even if nothing has changed)

- The entire EXTRAS directory (even if nothing has changed)

IMPORTANT NOTE:
The XML data set image file contains the creation time of the individual files of
your dataset as time stamps after the ‘pvv freeze’ or ‘pvv build’ command (see
below). In case of moving data products in and out of a file system, the user
therefore has to maintain the creation times of all the files involved.
On Solaris e.g. the ‘mv’ command preserves the creation time of a file and should
be used instead of making a copy using the ‘cp’ command.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 26

You should maintain the directory structure for all files packed together. This delta
archive will then have to be manually transferred to the PSA using your preferred ftp
client.

6.2.3 Manually constructing a Revision [e.g. Release0001 Revision0001]
For any revision to a release, you will need to pack the following files together into a
single file (e.g. tar.gz or tar.bz2):

- All products and product labels from Release1 Revision1

- All *.TXT files (e.g. CALINFO.TXT, DOCINFO.TXT etc)

- The entire INDEX directory (even if nothing has changed)

- The entire EXTRAS directory (even if nothing has changed)

You should maintain the directory structure for all files packed together. This delta
archive will then have to be manually transferred to the PSA using your preferred ftp
client.

7. Implementation of the PSA and Mission Specific Dictionaries
The PVV now includes a check through both a ‘PSA Data Dictionary’ and new Mission
Specific dictionaries, all of which are controlled by the PSA archive team. The new
dictionaries allow full validation of datasets complying with the PDS standards, which is
not possible using the PDS Dictionary alone.

Where appropriate, PVV will now check keyword values against a list of permitted
values in the dictionary (e.g. values for INSRUMENT_ID will be checked against a list in
the PSA Dictionary). If a value is used that is not in the dictionary, an error will be
thrown. In order to solve this, the given value will have to be added to the list in the
PSA dictionary.

Changes to the dictionaries can only be made by the PSA representatives, so all
requests for updates / additions must be made via your Mission Archive Manager (see
below). Once agreed, changes to the dictionaries can be implemented immediately,
allowing for testing of datasets and labels to continue without delay.

7.1 The ‘PSA Dictionary’
The PSA Dictionary is an extension of the PDS Data Dictionary that allows the PVV to
fully validate keywords, and (where applicable) their values and their type (i.e. whether
or not enumeration is permitted). There are several reasons for this new dictionary
implementation:

o All keywords have an additional parameter that will tell the PVV if
enumerated values are permitted.

[N.B. If you come across any keyword during testing that you feel
should be enumerated, but is currently not permitted, please contact
your Mission Archive Manager at the PSA to discuss and, if appropriate,
he/she will update this keyword]

o Objects in the PDS Dictionary that have the optional parameter of
‘PSDD’ permit the use of any keyword in the PDS Dictionary. Rather
than permitting all values, the PVV will now check against a list of
optional values in the PSA dictionary. Therefore, if any situations arise

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 27

where keywords are included in objects due to the ‘PSDD’ option being
present in the PDS Dictionary, the corresponding keyword must be
added to the optional list of the object in the PSA Dictionary.

[N.B. If you are using any keywords in an object as a result of the
‘PSDD’ option being present in the PDS Dictionary, please consult your
Mission Archive Manager at the PSA with a list of these, and, if
appropriate, the PSA Dictionary will be updated]

o The SAMPLE, BAND and LINE prefixes to keywords that are used in
the qube object are not currently in the PDS Data Dictionary. These
keywords have been added to the PSA Data Dictionary to allow
successful checking of these products.

o Some keywords are only allowed to have values that are listed in the
dictionary (these keywords have a list of permitted values in the PDS
Dictionary). If a value that is not in the dictionary is used, you will get
an ‘Illegal keyword value’ error from the PVV. To remove the error, this
value will have to be added to the list in the dictionary.

[N.B. Should you come across these errors, first check that you are
using a sensible value, and that no value already exists in the PDS
Dictionary that would fit your needs. If there is not a suitable value
available, then consult with your Mission Archive Manager to ask for the
value to be added to the PSA Dictionary].

7.2 Mission Specific Dictionaries
The PSA have now implemented Mission Specific Dictionaries to the PVV. These are
dictionaries containing new keywords that are deemed only of interest to the specific
mission / instrument for which they are used. All mission specific keywords will be
added to a mission specific dictionary, and any occurrences of these keywords in a
label will then be validated against this.

N.B. Mission specific keywords should all have a ‘MISSION_ID:’ prefix. For example
‘MEX: KEYWORD = VALUE’ or ‘S1: KEYWORD = VALUE’ for Mars Express and
SMART-1 respectively.

You should communicate with your Mission Archive Manager to decide upon any
Mission Specific Keywords you want, and the agreed keywords and definitions / values
will be added to the applicable dictionary.

7.3 Dictionary Versioning
The PSA have now implemented Dictionary versioning in the PVV in order to allow data
sets ingested with old dictionary values to remain compliant should we require ire-
ingestion. In addition, this allows us to keep the PSA dictionary in line with the most
recent version of the PDS Dictionary without forcing older data sets to become non-
compliant. The PSA Dictionary will be merged with the PDS dictionary whenever
significant updates have been made. This document will be updated with details of new
dictionary versions whenever they are made available.

During a ‘scan’ the PVV will stamp the XML file with the version of the PSA Dictionary
that is being used to validate the data set. A user can force a specific dictionary version
to be used using the ‘-Ddictionary=x.y’ flag when running the PVV, where x.y is the
version number of the dictionary to use. If no dictionary flag is given for a new data set,
the latest version will be used by default. If a non-existing dictionary version is given,
then the most recent will be used by default. At the time of writing, the following
Dictionary versions are implemented:

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 28

1.0 – Released 10-02-2005

1.1 – Released 27-07-2005

1.5 – Released 19-10-2005

In some cases, when a data set has been initially tested using an old Dictionary version,
a user can be presented with an ‘Illegal value for keyword’ error even after the value
listed has been entered in the dictionary. For example:

[VERIFY][E][07.020][0100] Illegal value for keyword MISSION_PHASE_NAME
 (DATA/NPI_EDR_L1B_AUG2005/NPINORM20052252023C_ACC01.LBL, 20)
 Keyword MISSION_PHASE_NAME cannot have value MR Phase 7

The above error occurred even though the “MR Phase 7” value was available for use in
the dictionary. This is because the dictionary version in the PDSVOLUME.XML file is
the older version and any updates made since the latest dictionary was released are not
found during validation. In these cases, the user should run the PVV with the flag –
Ddictionary=x.y where x.y represents the latest version of the PSA Dictionary.

8. Errors – Formatting and Types
The PVV throws messages with separate fields for each of the following:

- Command: The command being executed by the user

- Message Type: There are four types of messages thrown by the PVV

[I] Information – the user does not need to act on these messages – they
are for information only. By default, information messages are
switched off when running the PVV. They can be switched on using
the command option ‘–Dinfo=on’.

[W] Warning – these are warnings to the user of potential problems
detected by the PVV. Warnings will not cause a command to fail. By
default, warnings are switched on when running the PVV. They can
be switched off using the command option ‘-Dwarn=off’.

[E] Error – These are errors detected by the PVV and require fixes to your
dataset. Errors are always on when running the PVV. Individual
errors will not cause the PVV to fail. However, if a large number of
errors are accumulated, the execution will fail, and some errors will
need to be fixed before running the command again.

[F] Fatal Error – This is a critical error that has forced the PVV to fail
immediately. The error will need to be fixed before the command can
be executed successfully. Fatal errors are always switched on.

- Error Code: The error number. Definitions of the errors and their corresponding
codes are listed in [AD5]

- Number of Messages: This is simply a count of the messages thrown during an
execution

- Description of Error: This is a text field that provides a simple description of the
error and where it was detected (e.g. file name and line number). If no explicit
file name is given, the error is most likely to be found at the line number given in
the ‘.PDSVOLUME.XML’ file generated by the PVV during the scan.

- Further Details: Additional details of the error as required.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 29

An example of a message from the PVV is shown below, with each of the above fields
highlighted.

Some further examples of real errors from the PVV are shown below:

 [LABELS][W][09.005][0006] File referenced by pointer TABLE not being checked

 (DATA/MARS1/MARS.LBL, 14)

 External file(s) of pointer TABLE is(are) not being checked by the PVV

 in this operation

EXECUTION SUCCESSFUL

In this example, a warning is thrown when running the ‘pvv labels’ command. The
warning states that the pointer to the table is not being checked by this command, so
this would have to be checked another way. Warnings inform the user of potential
problems, and do not always need to be acted upon (note that the execution was
successful despite this message being thrown). If the number of warnings thrown
becomes cumbersome, they can be switched off using the ‘-Dwarn=off’ option.

[CATALOGS][E][02.031][0002] Required object SOFTWARE is missing in parent

 CATALOG (./VOLDESC.CAT, 34)

 Value of required object VOLUME:CATALOG:SOFTWARE is missing

Main index incomplete: file INDEX.LBL
missing in INDEX/ directory

Command being executed
(e.g. scan, label, check etc)

Message type
[I] = Information
[W] = Warning
[E] = Error
[F] = Fatal Error

Error code

Cumulative
 error count

Description of the error

[SCAN] [E] [01.012] [0001]

Required file INDEX.LBL missing.

Further details of error.

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 30

EXECUTION FAILED

In this example, the ‘pvv catalogs’ command was run, and the PVV has detected a
missing SOFT.CAT file pointer, which is required by the PDS Standards. The PVV
identifies that this file pointer is missing, and should be present on line 34 of this
particular VOLDESC.CAT. If no software catalog is present, the ‘NULL’ value can be
given.

[SCAN][E][01.027][0038] PRODUCT_ID keyword in label file

 DOCUMENT/MY_LABEL.LBL missing

 PRODUCT_ID missing in label file DOCUMENT/MY_LABEL.LBL

EXECUTION FAILED

In this example, the ‘pvv scan’ command was run, and the PVV has detected a missing
PRODUCT_ID keyword in the label file ‘MY_LABEL.LBL’ in the DOCUMENT directory.

[CHECK][F][03.005][0001] PDS IDs must be 40 characters long and formed of

 upper case letters, numbers, '_', '-', '/', or '.'.

 Error on line 2: cvc-pattern-valid: Value '' is not facet-valid with

 respect to pattern '[A-Zv0-9\-_\./]{1,40}' for type 'IDType'.

EXECUTION FAILED

In this example, the ‘pvv check’ command was run, and the PVV detected a fatal error
in line 2 of the ‘.PDSVOLUME.XML’ file (N.B. If a line number is given with no file
specified, you should always look in the XML file). Looking in the XML file shows that
this line contains the various IDs from the datset (e.g. DATSET_ID, INSTRUMENT_ID
etc.). One of these values is missing or incorrect. The user should locate the error in
the .PDSVOLUME.XML file, and correct the relevant ID in the corresponding catalog file
(the PVV reads the IDs from their corresponing catalog files e.g. DATASET_ID is read
from the DATASET.CAT etc.). Remember that once the correction is made, a new ‘pvv
scan’ is required to generate a new XML file before testing can continue.

[VERIFY][E][07.020][0006] Illegal value for keyword INSTRUMENT_ID

 (CATALOG/DATASET.CAT, 82)

 Keyword INSTRUMENT_ID cannot have value MY_INSTRUMENT

EXECUTION FAILED

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 31

In this example, an error is thrown when running the ‘pvv verify’ command. The error
states that the value ‘MY_INSTRUMENT’ is not permitted for the INSTRUMENT_ID
keyword. To solve this, the new value will have to be added to the PSA Dictionary (see
Section 7).

A complete list of the errors thrown by the PVV and the corresponding error codes can
be found in [AD5]. In case of problems or queries with the errors thrown, please refer to
your mission archive manager.

9. Future Releases – Features Yet To Be Implemented
Below are listed some of the features that have yet to be implemented in the PVV, and
will be present in future releases of the tool. Users should be aware of these limitations
when testing their datasets.

 Currently, the PVV does not handle the use of units correctly. Full validation of
units used in a keyword value will be implemented in a future version.

 The number of errors and warnings thrown by the PVV can be large if there are
identical errors in all products and there are hundreds of products in a data set.
 It is possible that a more controlled error manager will be looked into in the
long term to try and smooth this.

N.B. It is still vital that you use the correct release / revision IDs in the labels for
these directories, even though they are not separated out by these pvv
commands – the ‘pvv verify’ command requires the correct IDs and will check
these values for each release / revision.

10. Typical Problems and Solutions (FAQ)
 The PVV in Windows XP is crashing without finding my directory.

o Ensure that your dataset is in a directory with NO SPACES in the
pathname, and run the command again.

 The PVV in Windows XP always throws an error ‘Unable to locate tools.jar.
Expected to find it in c:/program files… etc.’

o This error is thrown if a user has only got the ‘JRE’ (Java Runtime
Environment) installed, and not the full ‘JDK’ (Java Development Kit).
For all normal use, the PVV will work perfectly with just the JRE, so this
error can be ignored and the PVV will still run. The full JDK installation
is only required if debugging is necessary, and does not need to be
installed for normal day-to-day PVV usage.

 The PVV cannot connect to the Dictionary server.

o Are you using a proxy server? If so, you need to edit the
$PVV_HOME/ext/pvv.properties file and include the details of your
proxy server.

 The PVV is crashing with a java.lang.OutOfMemoryError message.

o You need to edit the $PVV_HOME/ext/pvv.properties file and increase
the amount of memory allocated to the PVV in the relevant section
called ‘Run-Time Memory Settings’. By default, this is set to 64 MB, but

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 32

you can increase it to 128Mb or more as required. Although this can
slow the operations down, it should help solve any memory problems.

 I am running ‘pvv label’ on one of my files, and the PVV complains about a
missing ‘FMT’ file, but I am using a structure pointer to this file in my label, and
it is in the LABEL directory.

o Because ‘pvv label’ is only looking at a single file, it does not use the
XML file to look at the mapping of your directory structure, and
therefore cannot find the FMT file in the LABEL directory. For this
operation you will have to temporarily copy a version of the FMT file
into the same directory as the label being tested. Please note that this
is not the case for ‘pvv labels’ as this operation then uses the XML
image to look at the full structure of your data set.

 The PVV is throwing so many warnings that I cannot filter out the errors easily

o Run the command again with the option ‘-Dwarn=off’ to switch the
warnings off

 The PVV has thrown several errors which refer to ‘Error on line x’ but it does not
specify which file to look in. Where is the error?

o The line is in the ‘.PDSVOLUME.XML’ file. You need to look in the
XML file to locate the error, fix it in the dataset and re-run the scan to
build a new corrected XML file.

 The PVV is complaining about my mission specific keywords, which I have
placed in a GROUP=MISSION.

o Mission specific keywords should all have a ‘MISSION_ID:’ prefix. For
example ‘MEX: KEYWORD = VALUE’ or ‘S1: KEYWORD = VALUE’ for
Mars Express and SMART-1 respectively. These keywords should
NOT be placed in a ‘GROUP=MISSION’ object. If the PVV complains
about an ‘illegal keyword’ for one of your mission specific keywords,
please consult your mission archive manager and, if reasonable, he or
she will add it to the mission specific dictionary.

 The PVV does not accept one of my keywords in a parent object, although the
‘PSDD’ option is present in the PDS Dictionary, which implies I am free to use
any keyword.

o The PVV uses two dictionaries, the PDS Dictionary, and the ‘PSA
Dictionary’. If any situations arise where keywords are included in
objects due to the ‘PSDD’ option being present in the PDS Dictionary,
the corresponding keyword will be added to the optional list of the
object in the PSA Dictionary, which the PVV will also check.

N.B. All instances in which a keyword is used outside of those listed in
the required or optional set because of the presence of the PSDD
option, MUST be reported to your mission archive manager, who will
confirm that this is ok, and then update the PSA Dictionary.

 The PVV is complaining about ‘enumerated values’ not being permitted for a
certain keyword, which in fact requires enumeration.

o The PVV checks against the PSA dictionary to see if a keyword can be
enumerated. If you come across a keyword you feel should be
enumerated, but for which this is not currently allowed, you should
communicate with your Mission Archive Manager and ask for this
keyword to be updated in the PSA Dictionary. .

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 33

 The PVV is complaining about the units I am using on my keywords, but I

cannot see any problems.

o The PVV does not yet correctly handle units. This will be implemented
for a future version of the PVV.

 I would like to transfer my fully tested (and perfectly PDS compliant!) dataset to
the PSA. How can I use the PVV to do this directly?

o If you are not using the Release Concept [AD6] (Section 6), you can
first run the ‘pvv pack’ command from one directory above your rott
directory. This will produce a ‘tar.gz’ file containing your entire dataset.
 This can then be transferred to the PSA using your preferred ftp client,
or the ‘pvv upload’ command.

o If you are using the Release Concept [AD6] (Section 6), you can first
execute the ‘pvv build –Drelease=x –Drevision=y’ command, where x
and y are the release and revision number respectively. This will
generate a ‘tar.gz’ file containing only those files relevant to the
specified release and revision. This ‘tar.gz’ file can then be transferred
to the PSA using your preferred ftp client, or the ‘pvv upload’ command.

 I have several errors of the same type in my dataset simply because I have
hundreds of products with the same single error. I would like to move further
into the testing to identify other errors, but the PVV will crash after a limited
number of errors. Can I adjust this?

o By Default the PVV will fail an executed command after 50 errors are
received. To adjust this value, just run the command you want with the
option ‘-DstopAfter=xxx’ where ‘xxx’ is the number of errors you would
like the PVV to accept before failing. Example: to run pvv scan listing
200 errors, simply type ‘pvv scan –DstopAfter=200’.

 I have got a dataset ready to deliver, but the ‘pvv pack’ command seems to
generate an empty tar.gz file.

o You need to run the ‘pvv pack’ command form the directory above your
root directory.

 I have run through a completely successful test on my dataset, but I know there
are inconsistencies and gaps in the dataset. How thorough is the PVV and
what should I check manually to back up the software tests before I deliver my
dataset?

o The PVV does not yet check the content of the SOFTWARE directory,
or the DOCUMENTS, CALIBRATION and GEOMETRY directory
beyond the fact that every file requires a label, and that every directory
requires a corresponding INFO.TXT file. You should also be aware that
mission specific keywords are not yet verified.

 I am trying to re-run a test on my dataset, but I am getting the following sort of
error:

[VERIFY][F][09.018][0001] Dataset already transfered to PSA.

Dataset MY_DATASET release/revision 0001/0000 has

already been transfered to the PSA. If you wish to make an

update of this dataset, please use the release concept.

o You have already run the ‘pvv build’ command on this release/revision
of the dataset, so the XML file is frozen to ensure that no changes can

PVV UM s
a

Document No.
Issue/Rev. No.
Date
Page

: SOP-RSSD-UM-004
: Issue 4, Revision 1
: 15 May 2007
: 34

be made to the delivery. If you want to make changes and re-test the
dataset, you should make a Revision to the dataset (see Section 6).

 I am trying to upload my file to the PSA, but every time I run the ‘pvv upload’
command, it says that ‘0 files are transferred.

o You must specify the full path of the file to upload, not just the filename.

 I am getting an ‘Illegal value for keyword’ error, even though I can see the value
I am using is in the Dictionary.

o The dictionary version you are using is old. Run the PVV with the –
Ddictionary=x.y flag, where x.y is the latest version of the PSA
Dictionary (see Section 7.3).

In some cases, when a data set has been initially tested using an old Dictionary version,
a user can be presented with an ‘Illegal value for keyword’ error even after the value
listed has been entered in the dictionary. For example:

[VERIFY][E][07.020][0100] Illegal value for keyword MISSION_PHASE_NAME
 (DATA/NPI_EDR_L1B_AUG2005/NPINORM20052252023C_ACC01.LBL, 20)
 Keyword MISSION_PHASE_NAME cannot have value MR Phase 7

The above error occurred even though the “MR Phase 7” value was available for use in
the dictionary. This is because the dictionary version in the PDSVOLUME.XML file is
the older version and any updates made since the latest dictionary was released are not
found during validation. In these cases, the user should run the PVV with the flag –
Ddictionary=x.y where x.y represents the latest version of the PSA Dictionary.

If further errors or complications arise that are not clarified above, please consult your
mission archive manager for support. For problems with the software, please consult
the PVV support helpline outlined below.

11. PVV User Support Helpline
In case of problems with the PVV software, please contact your mission archive
scientist. For general PSA issues, contact psahelp@rssd.esa.int

