Planck AME

Alternative Models

Conclusions

A Case Against PAHs as the Carrier of the AME

Brandon Hensley Jet Propulsion Laboratory, California Institute of Technology

In collaboration with Bruce Draine (Princeton) Aaron Meisner (LBL)

© 2016 California Institute of Technology.

Government sponsorship acknowledged. AME Workshop 2016 June 23, 2016

Planck AME

Alternative Models

Conclusions

Spinning Dust Physics

- AME can be explained by spinning dust grains (Draine & Lazarian 1998ab)
- Very small grains (e.g. PAHs) can get spun up by gas collisions, radiative torques, and other processes
- If grains have a dipole moment, this rotation causes them to radiate

Credit: Yacine Ali-Haïmoud

PAHs and the AME ○●○ Planck AME

Alternative Models

Conclusions

PAHs

- Attractive AME carrier because they are small and ubiquitous
- Abundance traced by IR emission features at 8 and 12 μm

Planck AME

Alternative Models

Conclusions

Spinning Dust Emissivity

Galactic spinning dust emissivity

$$j_{
u, 30 \text{ GHz}}/n_H = 3 imes 10^{-18} \text{ Jy cm}^2 \text{ sr}^{-1} \text{ H}^{-1}$$

Emissivity per PAH fairly robust to environmental conditions, so assume a linear scaling with Σ_{PAH}

$$I_{\nu, 30 \text{ GHz}}^{\text{AME}} = 1.0 \left(\frac{\Sigma_{\text{PAH}}}{M_{\odot} \text{ kpc}^{-2}} \right) \text{ Jy sr}^{-1}$$

Planck AME

Alternative Models

Conclusions

Full-Sky Test of the Spinning PAH Hypothesis

Full-sky maps of the AME derived from component separation of the microwave sky by *Planck* let us test the AME-PAH connection in detail.

Planck AME

Alternative Models

Planck AME

Alternative Models

Conclusions

au_{353}

$$I_{\nu} = \tau_{\nu} B_{\nu} (T_d)$$
$$\tau_{\nu} = \kappa_{\nu} M_d$$

Planck AME

Alternative Models

Conclusions

Planck 2013 XI

Planck AME

Alternative Models

Meisner & Finkbeiner 2014

Planck AME

Alternative Models

Conclusions

*f*_{PAH}

Planck AME

Alternative Models

Conclusions

PAH Destruction

Planck AME

Alternative Models

Conclusions

Model Predictions

- 1 Linear correlation with τ_{353}
- 2 Even tighter correlation with $f_{PAH}\tau_{353}$
- 3 No strong correlation with radiation field

Planck AME

Alternative Models

Conclusions

Correlation with τ_{353}

Planck AME

Alternative Models

Conclusions

Model Predictions

- \checkmark Linear correlation with τ_{353}
- 2 Even tighter correlation with $f_{PAH}\tau_{353}$
- 3 No strong correlation with radiation field

Planck AME

Alternative Models

Conclusions

Correlation with $f_{PAH}\tau_{353}$

Planck AME

Alternative Models

Conclusions

Model Predictions

- ✓ Linear correlation with τ_{353}
- X Even tighter correlation with $f_{PAH}\tau_{353}$
- 3 No strong correlation with radiation field

Planck AME

Alternative Models

Conclusions

Correlation with \mathcal{R}

Planck AME

Alternative Models

Conclusions

Model Predictions

- ✓ Linear correlation with τ_{353}
- X Even tighter correlation with $f_{PAH}\tau_{353}$
- X No strong correlation with radiation field

Planck AME

Alternative Models

Conclusions

A Further Test

Does PAH abundance explain fluctuations in AME/R?

 Alternative Models

Conclusions

Correlation with $f_{PAH}\mathcal{R}$

• f_{PAH} does **NOT** improve the correlation with \mathcal{R}

Planck AME

Alternative Models

Conclusions

No Dependence on Galactic Latitude

Planck AME

Alternative Models

Conclusions

No Dependence on Environment

Planck AME

Alternative Models

Conclusions

Alternate Models

• What are our next-best theories?

Planck AME

Alternative Models

Conclusions

Magnetic Nanoparticles

- Emissivity per unit volume of 0.01µm grains heated to 18K
- Emissivity in mm and sub-mm much stronger than amorphous silicate grains

Planck AME

Alternative Models

Some Problems...

- Not great at reproducing the shape of the SED
- Emission would likely be strongly polarized, in conflict with observations
- Could still be part of the AME

Planck AME

Alternative Models

Spinning Non-PAHs

- Still spinning dust, just not PAHs see Thiem's talk
- Not clear whether including a sufficient number of ultrasmall grains of a different type (e.g. silicates) would violate other constraints (e.g. UV extinction)

Planck AME

Alternative Models

Conclusions

Spinning Non-PAHs

Preliminary!

Planck AME

Alternative Models

Conclusions

No Spinning PAH Emission?

- Invoking alternate explanation still requires asking why the PAHs *aren't* producing significant spinning dust emission
- Electric dipole moments overestimated?

Planck AME

Alternative Models

Conclusions

- No apparent link between AME and PAHs, other carriers and other mechanisms should be (re)considered
- New data is needed to better separate AME from other emission