

### CARMA observations of LDN 1780

### Matias Vidal Universidad de Chile

With Clive Dickinson, Adolf Witt, Stuart Harper, Simon Casassus

# LDN 1780



- Isolated Translucent region at 110±10 pc
- I = 359°, b = 36.7°
- Moderate optical extinction Av ~ 1-4 mag
- ~18 M  $\odot$ , no star formation

#### Image Credit: Planck vHFI Consortium/IRAS

# IR morphology





ISO contours from Ridderstad et al (2006)

#### Red: WISE 12 μm Green: IRAS 100 μm

IR

|              | Color  | L1780 <sub>AVG</sub> | L1780 <sub>MAX</sub> | L1780 <sub>MIN</sub> | SN    |
|--------------|--------|----------------------|----------------------|----------------------|-------|
|              | 12/100 | 0.10                 | 0.20                 | 0.05                 | 0.042 |
|              | 25/100 | 0.16                 | 0.26                 | 0.07                 | 0.054 |
| color ratios | 60/100 | 0.31                 | 0.42                 | 0.21                 | 0.21  |

Over-abundance of PAHs? (increased UV IRF can explain this too)

- 0.408 to 3000 GHz maps, including WMAP, Planck and COBE/DIRBE data.
- 1 deg resolution
- CMB emission dominates from 30 to 150 GHz.



- 0.408 to 3000 GHz maps, including WMAP, Planck and COBE/DIRBE data.
- 1 deg resolution
- CMB emission dominates from 30 to 150 GHz.
- After subtracction of CMB using Planck SMICA map, the cloud is visible from 23 to 3000 GHz.





Fit = ff + SD + TD + CMB



Fit = ff + SD + TD + CMB

### Previous high resolution observations

- Observed with the CBI at 31 GHz, 4' res.
- AME detected
- 31 GHz emission
  correlates better with
  IRAS 60 µm, not
  a PAH template.

Vidal et al. 2011



## **CARMA SZA observations**



- Given the illumination of the cloud, we expect a gradient in grains size across the cloud as PAH destruction rate is very sensitive to PAH size.
- Can we see this in the radio?

- 8 x 3.5m antennas
- 26 36 GHz
- ~11' PB
- ~2' resolution.



### **CARMA SZA observations**



#### **MEM reconstruction**

#### 2' resolution

## **IR** maps



## Dust temp. and opacity fit



**T**250

DT

## **IR correlations**



#### 8 µm/G0



160 µm

70 µm/G0

16<mark>0 µm/G</mark>0





24 µm

#### 24 µm/G0

# **IR correlations**

| Wavelength | r <sub>s</sub> | $r_s$ after $G_0$ correction |  |
|------------|----------------|------------------------------|--|
| [µm]       |                |                              |  |
| 8          | $0.14\pm0.06$  | $0.38\pm0.07$                |  |
| 24         | $0.21\pm0.06$  | $0.46\pm0.06$                |  |
| 70         | $0.49\pm0.07$  | $0.45\pm0.07$                |  |
| 160        | $0.36\pm0.07$  | $0.31\pm0.07$                |  |
| 250        | $0.35\pm0.06$  | $0.31\pm0.07$                |  |
| 350        | $0.34\pm0.06$  | $0.30\pm0.07$                |  |
| 500        | $0.34\pm0.06$  | $0.30\pm0.06$                |  |

# Modelling



# Modelling

- SPDUST package (Ali-Haïmoud et al. 2009, Silsbee et al. 2011) models SD using 7 parameters.
- 10<sup>7</sup> runs over a grid of parameters

| Parameter      | r <sub>0</sub> | $r_1$    | Steps | Туре   |
|----------------|----------------|----------|-------|--------|
| n <sub>H</sub> | 0.1            | $10^{5}$ | 10    | log    |
| Т              | 10             | $10^{5}$ | 10    | log    |
| χ              | $10^{-4}$      | 3000     | 10    | asinh  |
| x <sub>H</sub> | $10^{-4}$      | 1        | 10    | asinh  |
| x <sub>C</sub> | $10^{-4}$      | 1        | 10    | asinh  |
| У              | $10^{-4}$      | 1        | 10    | asinh  |
| b <sub>c</sub> | 0              | 1        | 10    | linear |

# Modelling



The difference in emissivity can be explained by SD using reasonable parameters for physical conditions.

# Summary

- LDN 1780 nice isolated cloud: low free-free, no strong synchrotron, morphology in IR and expected gradient of grain type due to IRF.
- AME clearly present at 1 deg scales.
- Better correlation of 30 GHZ emission with 24 & 70 µm but correlation improves with NIR when correcting for IRF
- Differences in AME emissivity can be explained by SPDUST