
Gaia Data Queries with ADQLGaia Data Queries with ADQL
Markus Demleitner (msdemlei@ari.uni-heidelberg.de)

Hendrik Heinl (heinl@ari.uni-heidelberg.de)

Agenda

• Why bother?

• A first query

• ADQL

• The finer points of TAP

T(able) A(ccess)

P(rotocol)

A(stronomical) D(ata)

Q(uery) L(anguage)

Open a browser on http://docs.g-vo.org/adql-gaia/html



Data Intensive ScienceData Intensive Science
Data-intensive science means:

1. Using many data collections

2. Using large data collections

Point (1) requires standard formats and access protocols to

the data, point (2) means moving the data to your box and

operating on it with FORTRAN and grep becomes infeasible.

The Virtual Observatory (VO) in general is about solving

problem (1), TAP/ADQL in particular about (2).



A First QueryA First Query

To follow the examples, start TOPCAT and select TAP in the

VO menu. Click the pin icon in the upper right corner of the

dialog.

In TAP URL: at the bottom of the window, enter

http://gaia.ari.uni-heidelberg.de/tap and click ”Use

Service”.

At the bottom of the form, at Mode: check “Synchronous” and

enter

⊲ 1 SELECT TOP 1 1+1 AS result FROM gaiadr1.tgas_source

in the text box, then click “Ok”. Copying and Pasting from

〈http://docs.g-vo.org/adql-gaia〉 is legal.



Why SQL?Why SQL?

The SELECT statement is written in ADQL, a dialect of SQL

(”sequel”). Such queries make up quite a bit of the science

within the VO.

SQL has been chosen as a base because

• Solid theory behind it (relational algebra)

• Lots of high-quality engines available

• Not Turing-complete, i.e., automated reasoning on

”programs” is not very hard



Relational AlgebraRelational Algebra

At the basis of relational data bases is the relational algebra, an

algebra on sets of tuples (“relations”) defining six operators:

• unary select

• unary project

• unary rename

• binary cartesian product

• binary union

• binary set difference

Good News: You don’t need to know any of this.



SELECT for realSELECT for real
ADQL defines just one statement, the SELECT statement, which

lets you write down expressions of relational algebra. Roughly,

it looks like this:

SELECT [TOP setLimit] selectList FROM fromClause [WHERE

conditions] [GROUP BY columns] [ORDER BY columns]

TOP

setLimit: just an integer giving how many rows you want

returned.

⊲ 2 SELECT TOP 5 * FROM gaiadr1.tgas_source

⊲ 3 SELECT TOP 10 * FROM gaiadr1.tgas_source



SELECT: ORDER BYSELECT: ORDER BY
ORDER BY takes columns: a list of column names (or

expressions), and you can add ASC (the default) or DESC

(descending order):

⊲ 4 SELECT TOP 5 source_id, parallax

FROM gaiadr1.tgas_source

ORDER BY parallax

⊲ 5 SELECT TOP 5 source_id, parallax

FROM gaiadr1.tgas_source

ORDER BY parallax DESC

⊲ 6 SELECT TOP 5 source_id, phot_g_mean_mag , parallax

FROM gaiadr1.tgas_source

ORDER BY phot_g_mean_mag, parallax

Note that ordering is outside of the relational model.



SELECT: what?SELECT: what?
The select list has column names or expressions involving

columns.

SQL expressions are not very different from those of other

programming languages.

⊲ 7 SELECT TOP 10

source_id,

SQRT(POWER(pmdec_error,2)+POWER(pmra_error,2)) AS

pm_errTot

FROM gaiadr1.tgas_source

Use COUNT(*) to figure out how many items there are.

⊲ 8 SELECT count(*) AS numEntries

FROM gaiadr1.tgas_source



SELECT: WHERE clauseSELECT: WHERE clause
Behind the WHERE is a logical expression; these are similar to

other languages as well, with operators AND, OR, and NOT.

⊲ 9 SELECT source_id, ra, dec

FROM gaiadr1.tgas_source

WHERE

phot_g_mean_flux > 13

AND parallax < 0.2



SELECT: GroupingSELECT: Grouping

For histogram-like functionality, you can compute factor sets,

i.e., subsets that have identical values for one or more columns,

and you can compute aggregate functions for them.

⊲ 10 SELECT COUNT(*) AS n,

ROUND(phot_g_mean_mag) AS bin,

AVG(parallax) AS parallax_mean

FROM gaiadr1.tgas_source

GROUP BY bin

ORDER BY bin

For simple GROUP applications, you can shortcut using DISTINCT

(which basically computes the “domain”).

⊲ 11 SELECT DISTINCT

ROUND(phot_g_mean_mag), ROUND(parallax)

FROM gaiadr1.tgas_source



SELECT: JOIN USINGSELECT: JOIN USING
The tricky point in ADQL is the FROM clause. So far, we had a

single table. Things get interesting when you add more tables:

JOIN.

⊲ 12 SELECT TOP 10 h1.ra, h1.dec, h1.hip, t1.hip

FROM hipparcos AS h1

JOIN tycho2 AS t1

USING (hip)

JOIN is a combination of cartesian product and a select.
FROM hipparcos AS h1

JOIN tycho2 AS t1

USING (hip)

yields the cartesian product of the hipparcos and tycho2 tables

but only retains the rows in which the hip columns in both

tables agree.



SELECT: JOIN ONSELECT: JOIN ON
If your join criteria are more complex, you can join ON:

⊲ 13 SELECT TOP 20 source_id, h.hip

FROM gaiadr1.tgas_source AS tgas

LEFT OUTER JOIN hipparcos as h ON (tgas.phot_g_mean_mag

BETWEEN

h.hpmag -0.05 AND h.hpmag+0.05)

• t1 INNER JOIN t2

• t1 LEFT OUTER JOIN t2

• t1 RIGHT OUTER JOIN t2

• t1 FULL OUTER JOIN t2



GeometriesGeometries
The main extension of ADQL wrt SQL is addition of geometric

functions.

Keep the crossmatch pattern somewhere handy (everything is

in degrees):

⊲ 14 SELECT TOP 5

source_id, tgas.ra, tgas.dec, tm.raj2000,

tm.dej2000, hmag, e_hmag

FROM gaiadr1.tgas_source as tgas

JOIN twomass AS tm

ON 1=CONTAINS (

POINT(’ICRS’, tm.raj2000, tm.dej2000),

CIRCLE(’ICRS’, tgas.ra, tgas.dec, 1.5/3600))



SubqueriesSubqueries

One of the more powerful features of SQL is that you can have

subqueries instead of tables within FROM. Just put them in

parentheses and give them a name using AS. This is particularly

convenient when you first want to try some query on a subset

of a big table:

⊲ 15 SELECT count(*) as n, round((hmag-jmag)*2) as bin

FROM (

SELECT TOP 4000 * FROM twomass) AS q

GROUP BY bin

ORDER BY bin



Subqueries on Gaia XmatchtablesSubqueries on Gaia Xmatchtables

Change the TAP service to

http://gea.esac.esa.int/tap-server/tap

In the query form type:

⊲ 16 SELECT *

FROM tmass_original_valid AS tmov

JOIN

(SELECT tgas.*, tmbn.tmass_oid

FROM gaiadr1.tgas_source AS tgas

JOIN tmass_best_neighbour AS tmbn ON

tgas.source_id=tmbn.source_id

WHERE 1=CONTAINS(POINT(’ICRS’, tgas.ra, tgas.dec),

CIRCLE(’ICRS’, 189.2, 62.21, 1.0))) AS tgtm

USING (tmass_oid)



TAP: UploadsTAP: Uploads

TAP lets you upload your own tables into the server for the

duration of the query.

Example: Take a subset of tgas source with positions and proper

motions and crossmatch it with sdss to get colors. First we make

the subset with:

⊲ 17 SELECT TOP 200

source_id, ra, dec, pmra, pmdec

FROM gaiadr1.tgas_source

WHERE 1=CONTAINS(POINT(’ICRS’, raj2000, dej2000),

CIRCLE(’ICRS’, 18.02, 9.281, 4.0 ))



TAP: Uploads 2TAP: Uploads 2

Then we change the TAP Service to http://dc.zah.uni-

heidelberg.de/tap and perform the following query:

⊲ 18 SELECT TOP 100

tgas.*, sdss.u, sdss.i, sdss.r, sdss.g

FROM sdssdr7.sources AS sdss

JOIN TAP_UPLOAD.t1 AS tgas

ON 1=CONTAINS(

POINT(’ICRS’, sdss.ra, sdss.dec),

CIRCLE(’ICRS’, tgas.ra, tgas.dec, 3./3600.))


