Interactive (statistical) visualisation and exploration of the full Gaia catalogue with vaex.

Maarten Breddels & Amina Helmi

WP985/WP945

Vaex demo / Gaia DR1 workshop ESAC 2016
Outline

- Motivation
- Technical
- Demo
- Conclusions
Motivation

• We have Gaia DR1
 • > 10^9 objects/stars
• Can we visualise and explore this?
 • We want to ‘see’ the data
 • Data checks/(Post) validation
 • Science: trends, relations, clustering
 • You are the (biological) neutral network
Motivation

• We have Gaia DR1
 • $>10^9$ objects/stars

• Can we visualise and explore this?
 • We want to ‘see’ the data
 • Data checks/(Post) validation
 • Science: trends, relations, clustering
 • You are the (biological) neutral network

• Problem
 • Scatter plots do not work well for 10^9 rows/objects (like Gaia)
 • Work with densities/statistics in 0,1,2 and 3d
 • Interactive?
 • Zoom, pan etc
 • Explore: selections/queries
Motivation

- We have Gaia DR1
 - $>10^9$ objects/stars

- Can we visualise and explore this?
 - We want to ‘see’ the data
 - Data checks/(Post) validation
 - Science: trends, relations, clustering
 - You are the (biological) neutral network

- Problem
 - Scatter plots do not work well for 10^9 rows/objects (like Gaia)
 - Work with densities/statistics in 0,1,2 and 3d
 - Interactive?
 - Zoom, pan etc
 - Explore: selections/queries
Motivation

- We have Gaia DR1
 - $> 10^9$ objects/stars
- Can we visualise and explore this?
 - We want to ‘see’ the data
 - Data checks/(Post) validation
 - Science: trends, relations, clustering
 - You are the (biological) neutral network
- Problem
 - Scatter plots do not work well for 10^9 rows/objects (like Gaia)
 - Work with densities/statistics in 0,1,2 and 3d
 - Interactive?
 - Zoom, pan etc
 - Explore: selections/queries
Motivation

- We have Gaia DR1
 - $> 10^9$ objects/stars
- Can we visualise and explore this?
 - We want to ‘see’ the data
 - Data checks/(Post) validation
 - Science: trends, relations, clustering
 - You are the (biological) neutral network
- Problem
 - Scatter plots do not work well for 10^9 rows/objects (like Gaia)
 - Work with densities/statistics in 0,1,2 and 3d
 - Interactive?
 - Zoom, pan etc
 - Explore: selections/queries
Motivation

- We have Gaia DR1
 - $> 10^9$ objects/stars
- Can we visualise and explore this?
 - We want to ‘see’ the data
 - Data checks/(Post) validation
 - Science: trends, relations, clustering
 - You are the (biological) neutral network
- Problem
 - Scatter plots do not work well for 10^9 rows/objects (like Gaia)
 - Work with densities/statistics in 0,1,2 and 3d
 - Interactive?
 - Zoom, pan etc
 - Explore: selections/queries
Situation

- TOPCAT comes close, not fast enough, works with individual rows/particles (written in Java)
- Your own IDL/Python code: a lot to consider to do it optimal (multicore, efficient storage, efficient algorithms, interactive becomes complex)
- DataShader: only visualisation of 2d and slower
- We want something to visualize 10^9 rows/objects in ~1 second
- Do we need to resorts to Big Data solutions, Hadoop?
How fast can it be processed?

- What can be done?
 - \(10 \times 2 \times 8 \text{ bytes} = 15 \text{ GiB}\) (double is 8 bytes)
 - Memory bandwidth: 10-20 GiB/s: \(~1\) second
 - CPU: 3 Ghz (but multicore, say 4): 12 cycles/second
 - Few cycles per row/object, simple algorithm
 - Histograms/Density grids
- Yes, but
 - If it fits/cached in memory, otherwise ssd/hdd speeds (10-100 seconds)
 - proper storage and reading of data
 - simple and fast algorithm for binning
How fast can it be processed?

- What can be done?
 - $10 \times 2 \times 8$ bytes = 15 GiB (double is 8 bytes)
 - Memory bandwidth: 10-20 GiB/s: ~1 second
 - CPU: 3 Ghz (but multicore, say 4): 12 cycles/second
 - Few cycles per row/object, simple algorithm
 - Histograms/Density grids
- Yes, but
 - If it fits/cached in memory, otherwise ssd/hdd speeds (10-100 seconds)
 - proper storage and reading of data
 - simple and fast algorithm for binning

- ~1 second
Statistics in N-d

\[
\begin{align*}
\mathbf{x} & : 1, 32, 4, \ldots, 9, 11 \\
\mathbf{y} & : 4, 7, 41, \ldots, 91, 61
\end{align*}
\]
Statistics in N-d

- count
- sum values
- min
- max
- moments
Statistics in N-d

- count
- sum values
- min
- max
- moments

\[x \]
\[y \]
\[v \]

+\(l \)
+\(v \), or \(v^2 \)
Statistics in N-d

- count
- sum values
- min
- max
- moments

- Possibilities
 - Total: flux, mass
 - Mean: velocity, metallicity
 - Dispersions: velocity…
 - Correlation
 - Statistics on a (N dim) grid
 - (And visualize them)
Examples
Examples
Examples
Vaex: Visualization And EXploration

- A library
 - python package
 - ‘import vaex’
- reading of data
- multithreading
- statistics/binning (0,1,2,3, Nd)
- selections/queries
- server/client
- integrates with IPython notebook
- Installation:
 - pip install —user —pre vaex
 - conda install -c conda-forge vaex
- open source / MIT License
- www.github.com/maartenbreddels/vaex
Vaex: Visualization And EXploration

- A library
 - python package
 - ‘import vaex’
- reading of data
- multithreading
- statistics/binning (0,1,2,3, Nd)
- selections/queries
- server/client
- integrates with IPython notebook

Installation:
- pip install —user —pre vaex
 - conda install -c conda-forge vaex

- open source / MIT License
 - www.github.com/maartenbreddels/vaex

- A GUI program
- Gives interactive navigation, zoom, pan
- interactive selection (lasso, rectangle)
- client
- undo/redo
- Standalone binary
 - http://vaex.astro.rug.nl/
Vaex: Visualization And EXploration

- A library
 - python package
 - ‘import vaex’
- reading of data
- multithreading
- statistics/binning (0,1,2,3, Nd)
- selections/queries
- server/client
- integrates with IPython notebook

Installation:
- pip install —user —pre vaex
- conda install -c conda-forge vaex

- open source / MIT License
- www.github.com/maartenbreddels/vaex

- A GUI program
- Gives interactive navigation, zoom, pan
- interactive selection (lasso, rectangle)
- client
- undo/redo
- Standalone binary
 - http://vaex.astro.rug.nl/
Demo program

- Basics (Helmi de Zeeuw 2000)
- Full Gaia DR1
- SAMP

- Laptop:
 - Macbook Air 13”, 8BG ram, ssd
- Server (gaia):
 - 2x8 cores (32 hyperthreading)
 - 256 GB RAM
 - 24 RAID
 - ~12 kEUR
Demo library

- Basics (statistics)
- Healpix/Full Gaia DR1
 - Saggitarius stream
- SAMP
- (Interactive)
Get vaex

• Standalone binary (OS X, Linux) (just download and start)
 • http://vaex.astro.rug.nl/#download
• Python library (superset of above)
 • Quick look / independent Python tree
 • curl http://vaex.astro.rug.nl/install_conda.sh | bash -
 • Anaconda (‘Python + package manager’ / recommended)
 • conda install -c conda-forge vaex
• Vanilla Python (PyQt may be a challenge to get installed)
 • pip install —user —pre vaex
How to get (Gaia DR1) data in vaex

- See vaex.astro.rug.nl/latest/getting_data_in_vaex.html
- Download from archive
 - convert all fits files to one big colfits file
 - (convert with vaex to hdf5 for better performance)
- http://vaex.astro.rug.nl/#gaia (Affiliate Data, Groningen, NL)
 - Full download (or 10% / 1%)
Workflows

- Data local
 - vaex program
 - python script
 - Jupyter notebook
- Laptop:
 - 1-10% random subset of the data
Workflows

- Data local
 - vaex program
 - python script
 - Jupyter notebook
 - Laptop:
 - 1-10% random subset of the data

- Data remote
 - vaex program (remote X11)
 - vaex server
 - vaex program
 - python script
 - Jupyter notebook
 - Remote Jupyter notebook server
Future plans

• Paper and 1.0.0 release ‘soon’

• Jupyter notebook
 • Interactive/ipywidgets has huge potential

• Distributed vaex (>10^10/sec)
Conclusions

• Vaex can handle 10^9 rows to compute N dimensional statistics
 • In order of ~1 second, interactive
 • which can be used for visualisation, in 1, 2 and 3d (vaex program)
 • Integrates with SAMP/TOPCAT
 • Publication quality plots with matplotlib
 • Even more relevant for DR2, Euclid, LSST, Pan-STARRS, others?