Using VOSA to exploit Gaia data Enrique Solano Carlos Rodrigo, Amelia Bayo, Francisco Jiménez

ESAC. Nov 2016

Gaia DR1 workshop

Outline

• Why use Spectral Energy Distributions (SEDs)?

• If you work with SEDs, why use VOSA?

• Example of science cases with Gaia and VOSA.

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

Why SEDs (Spectral Energy Distributions)?

$$F_{Bol} = \int_0^\infty F_{\nu} d\nu$$

Building SEDs

How to build a Spectral Energy Distribution?

Ingredients

•

Multiwavelength photometry

Data discovery, gathering and manipulation.

HMI Continuum Matches visible light Photosphere

AIA 1700 Å 4500 Kelvin Photosphere

AIA 4500 Å 4000 Kelvin Photosphere

2 million Kelvin Active regions

400.000 Kelvin Upper transition Region/quiet corona

AIA 131 Å 10 million Kelvin Floring regions

AIA 335 Å 2.5 million Kelvin

Active regions

AIA 171 Å

AIA 193 Å 1 million Kelvin Corona/flare plasma

6 million Kelvin

Flaring regions

Building SEDs

Data discovery gathering & manipulation

Observational data

Theoretical data

sv0 theoretical services VOSA Filters Models Documents Theoretical spectra

Theo

Stellar Spectra Models

AMES-Cond 2000

The AMES-Cond Model grid of theoretical spectra. (More info)

Black Body flux

Black Body flux as calculated in the BT-NextGen model. (More info)

▶ BT-COND

The BT-COND Model grid of theoretical spectra. (More info)

BT-NextGen (AGSS2009)

The NextGen Model grid of theoretical spectra; Gas phase only, valid for Teff > 2700 K. Updated opacities. (More info)

BT-Settl

The BT-Settl Model grid of theoretical spectra; With a cloud model, valid across the entire parameter range. (More info)

AMENEL 17 200 The second style of theoretical spectra (More info) E & Body flux

Newsletter

lata

Unloads

LogOu

Black Body flux.

Webberver

BT-DUSTY

The BT-DUSTY Model grid of theoretical spectra. (More info)

BT-NextGen (GNS93)

The NextGen Model grid of theoretical spectra; Gas phase only, valid for Teff > 2700 K. Updated opacities. (More info)

BT-Settl 2014

Building the grid. Work in progress (More info)

Building SEDs: Difficulties

Data Manipulation: From magnitudes to fluxes

[-] Gaia Data Release 1 Documentation release D.0 I Introduction to Gaia DR1

5.3 Calibration models

 $m_x = -2.5 \log_{10}$

Building SEDs: Difficulties

Data Manipulation: From theoretical spectra to synthetic photometry

Building SEDs: Difficulties

Data Analysis: Model fitting

Which approach is best? Chi2? Bayes? Others?

Build your favourite SED by hand.

VOSA to the rescue

- Available since 2008.
- More than 800 users.

http://svo2.cab.inta-csic.es/theory/vosa/

• More than 1.000.000 objects.

VOSA to the rescue

A&A 492, 277-287 (2008) DOI: 10.1051/0004-6361:200810395	More than 70 refereed papers
VOSA: virtual observatory SED analyzer	A6.4 556 A144 (2012)
An application to the Collinder 69 open cluster	ACA 350, A199 (2015)
A. Bayo ^{1, 2} , C. Rodriga Allard ³ The first planet detected in the WTS: an inflated hot Jupiter in a 3.35 d orbit around a late F star [*] M. Cappetta ^{1,1} , R. P. Saglia ^{1,2} , J. L. Birkby ^{3,4} , J. Koppenhoefer ^{1,2} , D. J. Pinfi P. Cruz ⁶ , G. Kovács ³ , B. Sipőcz ⁵ , D. Barrado ^{5,7} , B. Nefs ⁴ , Y. V. Pavlenko ⁹ , L. I C. del Burgo ^{10,11,12} , E. L. Martin ¹³ , I. Snellen ⁴ , J. Barnes ⁵ , A. Bayo ¹⁴ , D. A. C M. C. Gálvez-Ortiz ¹³ , N. Goulding ⁵ , C. Haswell ⁹ , O. Ivanyuk ⁸ , H. R. Jones ⁵ , N. N. Lodieu ⁹ , F. Marcoco ⁵ , D. Mislis ³ , F. Murgas ^{15,16} , R. Napiwotzki ⁵ , E. Palle ¹² I. Sarro Barn ¹² E. Sciano ^{6,19} P. Steale ¹ H. Streel ⁶ , P. Bata ^{15,16} , M. J. Zerdel ⁶⁰⁷	Proper motions of young stars in Chamaeleon II. New kinematical candidate members of Chamaeleon I and II* Belén López Martí ¹ , Francisco Jiménez-Esteban ^{1,2,3} , Amelia Bayo ^{4,5} , David Barrado ^{1,6} , Enrique Solano ^{1,2} , Hervé Bouy ¹ and Carlos Rodrigol. ² on of the HR8799 planetary system hology Barrado ^{1,2} , A. García Hemández ² , M. Aberasturi ¹ , B. Montesinos ¹ and A&A 554, A20 (2013)
A&A 560, A92 (2013)	A Virtual Observatory Census to Address Dwarfs Origins (AVOCADO)
J. Zendejas Dominguez ^{1,2} , J. Koppenhoefer ^{2,1} , R. P. Saglia ^{2,1} , J. L. Birkby ³ , S. T. Hodgkin ³ , G. Kovács ⁴ , D. J Sipőcz ⁵ , D. Barrado ^{6,7} , R. Bender ^{2,1} , C. del Burgo ⁸ , M. Cappetta ² , E. L. Martín ⁹ , S. V. Nefs ³ , A. Riffeser ¹ a The Seven Sister I. Empirical isochro	. Pinfield', B. nd P. Steele ² s DANCe ones, luminosity, and mass functions of the Pleiades cluster',",""
The Astrophysical Journal Supplement Series > Volume 216 > Number 2 H. Bouy ¹ , E. Bertin ² , L.	M. Sarro ³ , D. Barrado ¹ , E. Moraux ⁴ , J. Bouvie A&A 574, A57 (2015)
A GALEX-based Search for the Sparse Young	The CoPoT chemical neculiar target star HD 40310
Taurus-Aurigae Star Forming Region	The Cokor chemical peculiar target star HD 49510
Ana I. Gomez de Castro [*] , Javier Lopez-Santiago [*] , Fatima Lopez-Martinez [*] , Néstor Sánchez [*] , Paole A&A 558, A Manuel Cornide ² , and Javier Yañez Gestoso [*]	116 (2013) apil ¹ , W. W. Weiss ³ and T. Lüftinger ³
A&A 566, A103 (2014) HD 8550 Resolving	57: A Herbig B[e] star or an interacting B[e] binary? g HD 85567's circumstellar environment with the VLTI and AMBER'."
High-resolution imaging of <i>Kepler</i> planet host candidate _{H. E.} Whee A comprehensive comparison of different techniques'	lwright, G. Weigelt, A. (^{A&A} 541, A38 (2012)
J. Lillo-Box, D. Barrado and H. Bouy	Warm debris disks candidates in transiting planets systems
Fundamental parameters of the close interacting binary HD 170582 and its lumin	ous accretion disc
R. E. Mennickent ^{1,*} , G. Djurašević ² , M. Cabezas ¹ , A. Cséki ² , J. G. Rosales ¹ , E. Niemczura ³ , I. Araya ⁴ and M. Curé ⁴	

VO SED Analyzer

Why VOSA? Because...

This is VOSA version 5.1 See old version 4.0

see olu	version	4.0
	Contract of the	and the second second

Files	Objects	Build SEDs	Analys	e SEDs	HR Diag.	Results	Help			
Stars and brown dwarfs (Cha Upload	^{ange)} your own data file ((max size=500Kb)	No file selected (Select/upload a file) Create a single object data file							
It must c (A small file in as	comply with the requi utility is available to cii (csv) or votable to	red data format help you to convert an VOSA input format)	original	Just writ that you data file RA and [te the coordinates (in de want to study and we w with the adequate form DEC are compulsory.	ecimal degrees) of one will create a single obje nat.	object ect			
File to u	upload: Choose file No f	ile chosen		-						
Descrip	otion:			RA:	(deg)					
File type	File type: • Fluxes (erg/cm2/s/A) • Fluxes (Jy) • Maonitudes				ne: (deg)					
Upload				Create						
	Files that space. Ho it will be Please, w us anymo has its lin	have not been used in owever, if you want to available again. /henever you are done ore, we would apprecia nits!	n the last 3 use an arch with a file ate if you co	months hav hived file, ji and you do uld delete	ve been 'archived' to sa ust click the 'Restore' l not need it to be archi it. VOSA space is large	ave disk ink and ived by a but it				

Multiwavelength photometry: observations

- Given a list of objects, VOSA gathers photometric information & metadata (identifiers, qflags, obs. dates,...) from archives & services using VO protocols (ConeSearch).
- 33 catalogues.
- From the UV to IR.

- Highly demanded.
- Large area.
- Information on quality.

f S	VO SED Analyzer This is VOSA version 5.0 See old version 4.0
	Files Objects Build SEDs Analyse SEDs HR Diag. Results Help Test: Stars and brown dwarfs (Change) File: RA:, DEC: (info) (Change) File: RA:
√	GAIA DR1
	Gaia DR1 contains positions (RA,DEC) and G magnitudes for all sources observed between 25 July 2014 and 16 September 2015 (1142679769 sources). More Info. Filters: GAIA/GAIA0.G Search radius: 5 arcsec You can apply limits so that magnitudes out of the specified range are not shown
	Min mag Max mag
	<= GAIA/GAIAO.G <=
	Hide magnitude limits
Γ	Search radius:20 arcsec Show flux limits Show flux limits
	MSX6C Infrared Point Source Catalog Version 2.3 of the Midcourse Space Experiment (MSX) Point Source The Ar(ARJ/IRC Point Source Catalogue Version 1.0 provides positions

• Multiwavelength photometry: models

- 23 collections of theoretical spectra.
- VO protocols to handle theoretical models in a standard way.
- From O stars to brown dwarfs.
- From giants to white dwarfs.

- From magnitudes to fluxes and from theoretical spectra to synthetic photometry.
 - VOSA takes advantage of the Filter Profile Service to get the needed information (i.e. zeropoints and other filter properties to, for instance, estimate flux overlapping).
 - Photometric systems described following the VO Photometric Data Model.

• And many more things...

• Parameters of interest (e.g. distances, extinction).

	Object		Fin	a		User	Gaia TGAS							
Name	RA (deg)	DEC (deg)	Dis (pc)	∆Dis (pc)	D (pc)	∆Dis (pc)	∆ (arcsec)	RA (deg)	DEC (deg)	Pix (mas)	ΔPlx (mas)	D (pc)	∆Dis (pc)	
AK_Pic	99.501523980	-61.533387245	21.295	0.367	21.295	0.367								
BD-034778	301.205833	-2.655556	66.907	2.836	66.907	2.836	1.4874278531513	301.20577672353807	-2.6559653324222907	14.946160262675168	0.633445535189698	66.907	2.836	۲
CP-681894	200.53125	-69.636667	98.892	3.477	98.892	3.477	0.62841099688041	200.53096654040246	-69.63681101855927	10.112062527326222	0.35555658147693964	98.892	3.477	۲
EG_Cha	129.234167	-78.946111	102.264	6.427	102.26	6.427	0.86741015893762	129.23358291137242	-78.94589766116239	9.77865609415897	0.6145318505980452	102.264	6.427	۲
HD_217379	345.116473141	-26.311887527	32.009	0.277	32.009	0.277	2.978832064554	345.1170290328832	-26.31254811756945	31.241380996286175	0.2701321530637279	32.009	0.277	۲

- And many more things...
 - Identification of IR excess

- And many more things...
 - Identification of bad photometric points (not considered in the fit)

Science case #1: Determination of physical parameters

<u>I/337/gaia</u>	Gaia DR1 (Gaia Collaboration, 2016
Post annotation	GaiaSource data (Download Gaia Sc

0	<u>start AladinLite</u>					
<u>Full</u>	RA_ICRS	DE_ICRS	<gmag></gmag>			
	deg	deg	mag			
<u>1</u>	063.4107528711	-89.9888879972	17.965			
<u>2</u>	037.5117084305	-89.9858176527	16.664			
<u>3</u>	084.7593492719	-89.9781776713	18.553			

Objects											
Object	Model	Teff		LogL		Age			Mass		
case0	siess	6500	(6375,6625)	0.9087	(0.7817,1.0067)	0.0102	(0.0090,2.0403)	[1]	1.5997	(1.4995,1.7141)	

[1] The distance to one of the closer curves has been estimated as the one to the closest point in the curve

Gaia TGAS

Science case #1: Disk characterization

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 211:25 (22pp), 2014 April © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0067-0049/211/2/25

THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

Christine H. Chen¹, Tushar Mittal², Marc Kuchner³, William J. Forrest⁴, Carey M. Lisse⁵, P. Manoj⁶, Benjamin A. Sargent⁷, and Dan M. Watson⁴

- Detailed characterization of the photospheric component
- Disk evolution with age

Science case #2: Stellar associations

Science case #2: Identification of disks

CP-681894

Science case#2: Age estimation

Science case #3

arXiv.org > astro-ph > arXiv:1609.04389

Astrophysics > Earth and Planetary Astrophysics

Accurate, Empirical Radii and Masses of Planets with Gaia Parallaxes

Keivan G. Stassun (1,2), Karen A. Collins (1), B. Scott Gaudi (3) ((1) Vanderbilt University, (2) Fisk University, (3) Ohio State University)

(Submitted on 14 Sep 2016 (v1), last revised 15 Sep 2016 (this version, v2))

We present new, empirical measurements of the radii of 132 stars that host transiting planets. These stellar radii are determined using only direct observables----the bolometric flux at Earth, the stellar effective temperature, and the parallax newly provided by the Gaia first data release----and thus are virtually model independent, extinction being the only free parameter. We also determine each star's mass using our newly determined radius and the stellar density, itself a virtually model independent quantity from the previously published transit analysis. The newly determined stellar radii and masses are in turn used to re-determine the transiting planet radii and masses, once again using only direct observables. The uncertainties on the stellar radii and masses are typically 8% and 30%, respectively, and the resulting uncertainties on the planet radii and masses are 9% and 22%, respectively. These accuracies are generally larger than the previously published model-dependent precisions of 5% and 6% on the planet radii and masses, respectively, but the newly determined values are purely empirical. We additionally report stellar radii for 366 stars that host radial-velocity (non-transiting) planets, with a typical achieved accuracy in the radii of 2%. Most importantly, the stellar bolometric fluxes and angular radii reported here---with typical accuracies of 1.7% and 1.8%, respectively---will serve as a fundamental data set to permit the re-determination of the planet radii and masses with the {\t Gaia} second data release to 3% and 5% accuracy, comparable to or better than currently published precisions, but in an entirely empirical fashion.

$$\Delta \mathbf{F} = \left(\frac{R_{planet}}{R_{star}}\right)^2$$

$$M_p = \frac{K_{\rm RV}\sqrt{1-e^2}}{\sin i} \left(\frac{P}{2\pi G}\right)^{1/3} M_{\star}^{2/3}$$

Science case #3

- Masses and radii of planets are necessary to:
 - Shed light on inflated hot-Jupiters.
 - 0.2-2.1MJup. Radii larger than predicted by models.
 - Heat from the star and internal heating.

→ Planet radius as a function of irradiation, age, magnetic fields, winds,...

• Infer the presence of rocky cores in hot-Jupiters.

→ Impact on formation theories (core accretion vs gravitational instability).

Science case #3

- Empirical determination (model independent) of the radii and masses of stars hosting planets.
- Fbol \rightarrow empirical
- Lbol=4πD²Fbol (D from TGAS parallaxes)
- R=sqrt(Lbol/(4πσTeff⁴))
- $g = G M / R^2$

Do you want to know more?

vosa-support@cab.inta-csic.es

• VOSA: http://svo2.cab.inta-csic.es/theory/vosa/

• VOSA workflow:

https://www.astron.nl/asterics/doku.php? id=open:wp4:view_vosa_tutorial