

Preparing a JWST coronagraph proposal.

Laurent Pueyo (STScI) for the JWST Coronagraphs Working Group

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

List of Science Use cases and SODRM.

I. Characterization of a known planet.

This use-case corresponds to proposals to observe a previously discovered planet to characterize its atmosphere. Such observations will likely desire multiple filters and potentially both NIRCam and MIRI. Observations may also desire a full-frame imaging capability with the intent to perform astrometry on the planet.

TR JWST-STScI-004140 described two possible configurations of coronagraph sequences for these observations: one with interleaved filters and one in which the target and reference are observed sequentially for each filter.

target_1, MIRI, 4QPM, F1065, -5deg target_1, MIRI, 4QPM, F1140, -5deg target_1, MIRI, 4QPM, F1550, -5deg target_1, MIRI, 4QPM, F1065, 5deg target_1, MIRI, 4QPM, F1140, 5deg target_1, MIRI, 4QPM, F1550, 5deg PSF1, MIRI, 4QPM, F1065 PSF1, MIRI, 4QPM, F1140 PSF1, MIRI, 4QPM, F1550

These programs have been implemented in APT.

2. Characterization of a known disk.

This use-case corresponds to proposals to characterize known circumstellar disks. Observing programs for this use case may require multiple filters and instruments. Additionally, if observing with the NIRCam bar masks or MIRI 4QPMs, users may want to make a second set of observations at a large relative roll angle (~30° or more) to move the mask axes and recover the full astronomical scene. Given JWST's pointing constraints, obtaining relative roll angles $\gtrsim 10^{\circ}$ requires observing on multiple dates. TR JWST-STScI-004140 gives the following example coronagraphic sequence for MIRI:

target_1, MIRI, 4QPM, F1065, -5deg target_1, MIRI, 4QPM, F1550, -5deg target_1, MIRI, 4QPM, F1550, +5deg target_1, MIRI, 4QPM, F1065, +5deg PSF1, MIRI, 4QPM, F1065 PSF1, MIRI, 4QPM, F1550

target_1, MIRI, 4QPM, F1065, 40deg target_1, MIRI, 4QPM, F1550, 40deg target_1, MIRI, 4QPM, F1065, 50deg target_1, MIRI, 4QPM, F1550, 50deg PSF1, MIRI, 4QPM, F1065 PSF1, MIRI, 4QPM, F1550

Where each 6-observation coronagraphic sequence is non-interruptible, includes a roll dither, and observations at two filters.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

This use-case corresponds to proposals to observe a previously discovered planet to characterize its atmosphere. Such observations will likely desire multiple filters and potentially both NIRCam and MIRI. Observations may also desire a full-frame imaging capability with the intent to perform astrometry on the planet.

TR JWST-STScI-004140 described two possible configurations of coronagraph sequences for these observations: one with interleaved filters and one in which the target and reference are observed sequentially for each filter.

Target	Reference
HR 8799	28-PEG
Fomalhaut	V-V-PSA
Beta Pic	DEL-DOR
GQ Lup	IRAS-15443-3521
2MASSWJ1207334-393254	2MASS-J12505265-2121136
1RXS J160929.1-210524	2MASS-J16014743-2049457
UScoCTIO108	2MASS-J16084744-2235477
CT Cha	V-VW-CHA

These programs have been implemented in APT.

Mastering the Science Instruments and the observing modes of JN HI

This use-case corresponds to proposals to characterize known circumstenar disks. Observing programs for this use case may require multiple filters and instruments. Additionally, if observing with the NIRCam bar masks or MIRI 4QPMs, users may want to make a second set of observations at a large relative roll angle (~30° or more) to move the mask axes and recover the full astronomical scene. Given JWST's pointing constraints, obtaining relative roll angles $\geq 10^{\circ}$ requires observing on multiple dates. TR JWST-STScI-004140 gives the following example coronagraphic sequence for MIRI:

target 1, MIRI, 4QPM, F1065, -5deg

Target	Reference
HD 141569	49 Cet
HR 4796A	U Cen
HR 32297	HD 33403
Fomalhaut	Alf Lyr
Beta Pic	Alf Pic
HD 15745	HD 20499
HD 15115	HR 783
HD 181327	HR 7297
HD 139664	HD 99353
HD 10647	Alf Boo
HD 107146	HD 120066
HD 61005	HD 65161
HD 92945	HD 89585
An Mia	IID 1010/0

511

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

ETC Engine for coronagraphy

Calculation based on multiple realizations of the noise to assemble covariance matrices.

ETC Engine for coronagraphy

ETC will calculate three levels of contrast for a given

observation.

Raw contrast

After reference subtraction

Log . 2.8"", 1/1000 Linear , 2.8'', 1/100

Example of the 1D ETC report on speckle noise

Mastering the Science Instru

Foreword:

- This is a semi-stable development version of ETC.
- Only "optimal" PSF subtraction is operational so far, however all the machinery is in place for the two other configurations.
- Quantitive verification of ETC for coronagraphy has not occurred yet.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

Laurer			
$\leftarrow \rightarrow \mathbb{C}$ \bigtriangleup a https://3.etc.stsci.edu:4990/workbook.html?wb_id=1300#			
🗰 Apps 📀 www.mywedding.c 🔯 onlinelibrary.wiley.c 😂 ALICE_Brendan - D 🗋 SVO Filter Profile S 🌆 GPIES-slack 🕛 UltiPro 🚇 JWST_ETC_Corono			
Exposure Time Calculator Edit - Expand - Developer- Laurent Pueyo - Help -			
Sample Coronagraphy Calculations MIRI and NIRCam coronagraphy calculations using three faint sources, one central star, and one reference source			
Scenes and Sources Calculations Upload Spectra Caveats and Limitations			
Select a Scene	Select a Source	Source Editor	
ID - Name - Sources # Calcs ·	ID Plo Name - Scenes - # Calcs	ID Continuum Renorm Lines Shape Offset	
1 Coronagraphy scent 1,2,3,4,5 4	1 Central Star 1 4 2 Faint Source A 1 4	Normalize Source Flux Density Renormalization applied after redshift	
	3 Faint Source B 1 4	O Normalize at wavelength	
	4 Faint Source C 1 4	0.1 flam \$	
	5 Reference Star 1 4	lambda 2.0 µm	
		Normalize in bandpass	
		5.2 abmag 🛊 at	
		○ JWST MIRI/IMAGING \$ F560W \$	
New Add Source Remove Source	New Delete	○ HST WFC3/IR \$ F098M \$ Source selected: 1 Reset Save	
https://3.etc.stsci.edu:4990/workbook.html?wb.id=1300#sctab_renormconfig			

Sample Coronagraphy Calcule ×			Laurent	
← → C ☆ https://3.etc.stsci.edu:4990/workbook.html?wb_id=1300#			* 🛛 🗉 🔊 🗄	
🛗 Apps 🔘 www.mywedding.c 🔟 onlinelibrary.wiley.c 😻 ALICE_Brendan - D 🔼 SVO Filter Pr	rofile S # GPIES	S-slack 빈 UltiPro 殷 JWST_ETC_Corono		
Exposure Time Calculator Edit - Expand - Developer-			Laurent Pueyo - Help -	
Sample Coronagraphy Calculations MIRI and NIRCam coronagraph	hy calculations using	three faint sources, one central star, and one reference source		
Scenes and Sources Calculations Upload Spectra Caveats and Limitations				
Select a Scene Select a Source		Source Editor		
ID - Name - Sources # Calcs · ID - Plo Name - Scener	s - # Calcs	ID Continuum Renorm Lines	Shape Offset	
1 Coronagraphy scent 1,2,3,4,5 4 1 Central Star 1	4			
2 🔽 Faint Source A 1	4	Normalize Source Flux Density		
3 🔲 Faint Source B 1	4	Normalize at wavelength		
4 🔲 Faint Source C 1	4			
5 🔲 Reference Star 1	4	0.1 tiam 🗘		
		lambda 2.0 µm		
		 Normalize in bandpass 		
		15.2 abmag 🛊 at		
		⊖ JWST MIRI/IMAGING ♦ F5	60W \$	
		O HST WFC3/IR € F098M €		
New Add Source Remove Source New Delete		Source selected: 2	Reset Save	
Scene Sketch Source Spectrum Plo	nts	Used in Ca	loulations	

Sample Coronagraphy Calcula ×		Laurent
\leftarrow \rightarrow C \triangle https://3.etc.stsci.edu:4990/workbook.html	?wb_id=1300#	★ 🛛 🗉 🖏 🚦
🔛 Apps 📀 www.mywedding.c 👿 onlinelibrary.wiley.c 💝 AL	E_Brendan - D 🔟 SVO Filter Profile S 🌃 GPIES-slack 🔰 UltiPro 👰 JWST_ETC_Corono	
Exposure Time Calculator Edit - Expand - I	eveloper -	Laurent Pueyo - Help -
Scenes and Sources Calculations Upload Spectra	Caveats and Limitations	
MIRI - NIRCam - NIRISS - NIRSpec -	Scene ★ Backgrounds Instrument Setup Detector Setup	Strategy
ID - Plot Mode - Scene - (s) - St 7 nircam coronagraphy 1 12.00 14	A - ▲ MIRI Coronagraphy MIRI CORON	JAGRAPHY FQPM1065 F1065C
6 miri coronagraphy 1 4.56 16	18 P	
5 nircam coronagraphy 1 32.40 27		
2 📝 miri coronagraphy 1 22.78 73	12 O	
,,		10.5 11.0 11.5 λ (μm)
	Calculation selected: 2, Mode: miri coronagraphy	Reset Calculate
Images	Plots	ts

Sample Coronagraphy Calcule ×		Laurent
$\leftarrow \rightarrow$ C \triangle https://3.etc.stsci.edu:4990/workbook.html?wb_id=1300#		* 🛛 🗉 🕤 🗄
🗰 Apps 🧿 www.mywedding.c 👿 onlinelibrary.wiley.c 💝 ALICE_Brendan - D 🛛	🛿 SVO Filter Profile S 🌃 GPIES-slack 빈 UltiPro 🚇 JWS	T_ETC_Corono
Exposure Time Calculator Edit - Expand - Developer-		Laurent Pueyo - Help -
Sample Coronagraphy Calculations MIRI and NIRC	am coronagraphy calculations using three faint sources, one centra	I star, and one reference source
Scenes and Sources Calculations Upload Spectra Caveats and Limitations		
MIRI NIRCam NIRISS NIRSpec	Scene * Backgrounds Instrument Setup	Detector Setup Strategy
ID - Plot Mode - Scene - (s) - SNR - A	Readout patterns	
7 🔲 nircam coronagraphy 1 12.00 14.03 📀	FAST \$	
6 🔲 miri coronagraphy 1 4.56 161.18 💽	Groups Integrations	Exposures
5 🔲 nircam coronagraphy 1 32.40 270.25 😲	10 10	1
2 📝 miri coronagraphy 1 22.78 732.12 📀		
https://3.etc.stsci.edu:4990/workbook.html?wb_id=1300#detectorsetup	Calculation selected: 2, Mode: miri coronagraphy	Reset Calculate

Sample Coronagraphy Calcula ×	Laurent	
$\leftarrow \ \ \rightarrow \ \ \mathbb{C} \ \ \underline{\mathbb{C}} \ \ \ \underline{\mathbb{C}} \ \ \underline{\mathbb{C}} \ \ \ \ \ \ \ \ \ \ \ \ \$	🖈 🖸 🗉 🖓 🗄	
III Apps 🗿 www.mywedding.c 👿 onlinelibrary.wiley.c 🐯 ALICE_Brendan - D	. 🔼 SVO Filter Profile S 🌆 GPIES-slack 🙂 UltiPro 🙀 JWST_ETC_Corono	
Exposure Time Calculator Edit - Expand - Developer-	Laurent Pueyo - Help -	
Sample Coronagraphy Calculations MIRI and N	IIRCam coronagraphy calculations using three faint sources, one central star, and one reference source	
Scenes and Sources Calculations Upload Spectra Caveats and Limitations		
MIRI - NIRCam - NIRISS - NIRSpec -	Scene ★ Backgrounds Instrument Setup Detector Setup Strategy	
ID A Plot Mode - Scene - (s) - SNR - 🖄	Readout patterns	
7 🔲 nircam coronagraphy 1 12.00 14.03	FAST \$	
6 🔲 miri coronagraphy 1 4.56 161.18 📀	Groups Integrations Exposures	
5 🔲 nircam coronagraphy 1 32.40 270.25 😲	10 2 1	
2 🔲 miri coronagraphy 1 22.78 732.12 📀		
	Calculation selected: 6, Mode: miri coronagraphy Reset Calculate	

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

Target visibility

Not all sources can be view at any time at any orientation. Main driver is the sun exclusion angle.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

Target visibility demo

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

Standard Coronagraph Sequence.

- Roll I Roll 2 Reference.
- Exceptions will be possible for relevant use cases.
- Reference exposures will be public.

• Overheads will be charged to user. If the science can be done without the two rolls and/or reference then justification is needed.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

Small Grid Dithers

Small Grid Dithers

Nebb Space Jelestop Set Vebb Space Jelestop Set Vebb Space Jelestop Set Vebb Space Jelestop Set Vebb Space Jelestop

F430M-MASK430R F210M-MASKSWB

 -3
 -2
 -1
 0
 1
 2
 3
 -3
 -2
 -1
 0
 1
 2
 3

 Figure 4: A simulated case showing the relative performance of Classical subtraction (*top row*) and Small-Grid Dithers (*bottom row*) for the NIRCam F430M+MASK430R (*left*) and F210M+MASKSWB (*right*) coronagraphs using fake planets with a large difference in magnitude of 14.

Figure 5: A simulated case showing the relative performance of Classical subtraction (*top row*) and Small-Grid Dithers (*bottom row*) for all three of MIRI's Four-Quadrant Phase Masks using fake planets with differences in magnitude of ~10 (see Boccaletti et al. 2015).

See: <u>https://blogs.stsci.edu/newsletter/files/2016/01/Lajoie.pdf</u> <u>http://spie.org/Publications/Proceedings/Paper/10.1117/12.2057190</u>

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

0 0000020

0.0000015

0.0000010

0.0000005

.0000000

Tuesday, September 27, 16

MIRI

Standard Coronagraph Sequence: overheads

STScI SCIENCE INSTITUTE When using multiple filters, two options for coronagraph sequence:

- An "optimal wavefront stability" strategy for which the observations are consecutive in each filter to minimize the chance of any wavefront changes. This strategy increases the number of slews and rolls for the telescope.
- An "optimal efficiency" strategy for which observations for a given target are organized in each filter and coronagraphs to minimize the number of rolls and slews. This strategy increases the time between an observation of a target in a given filter and the corresponding reference PSF star observation in the same filter, which *may* allow increased variations in PSF properties, but which will *not necessarily* do so.

NIRCam charactrization: 3 coronagraphs, 6 filters total

2-1

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

After your observations have been taken.

- Specific exposures dedicates to astrometric and photometric calibration.
- The possibility to use a PSF library will be enabled.
- Coronagraph pipeline will include optimal image combination algorithms (KLIP/LOCI).
- Automated pipeline will run "conservative" data analyses.
- Python code will be available for custom analysis of the data.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016

- Science Use Cases.
- Exposure Time Calculator.
- Target Visibility.
- Standard Coronagraph Sequence.
- Astronomer Proposal Tool.
- After your observations have been taken.

Thank you.

Mastering the Science Instruments and the observing modes of JWST. Sept 26 th- 28 th 2016