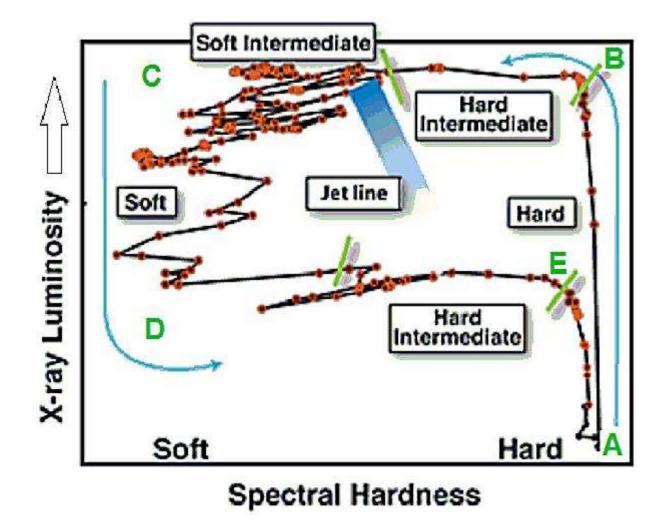
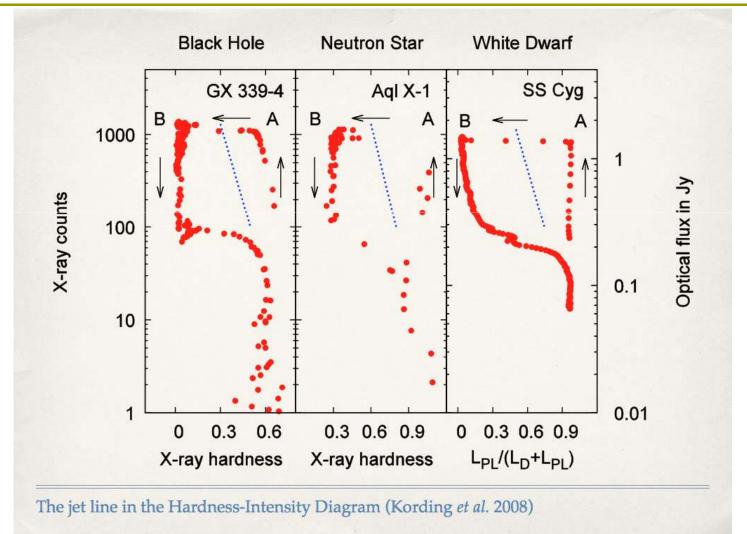
Interpretation of the Hardness – Luminosity Diagram of Black-hole X-ray Transients

Nick Kylafis University of Crete

with Tomaso Belloni


ESA/ESAC, 3 April 2013

Introduction

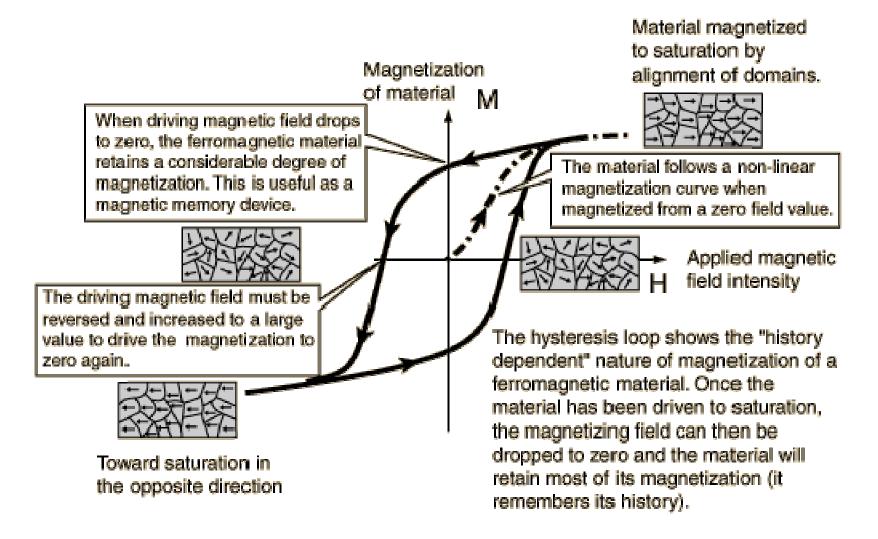

Black-hole X-ray transients (XRTs) exhibit outbursts.

- In a Hardness-Luminosity Diagram, XRTs exhibit a characteristic "q"-shaped curve, sometimes called hysteresis curve (next slide).
- At the beginning and the end of the outburst, the spectrum is hard (hard state). At the peak of the outburst, the spectrum is soft (soft state).

GX 339-4

Similar behavior for BH, NS, WD.

IMPORTANT!


The q-shaped curve (hysteresis curve) is traversed in the counterclockwise direction.

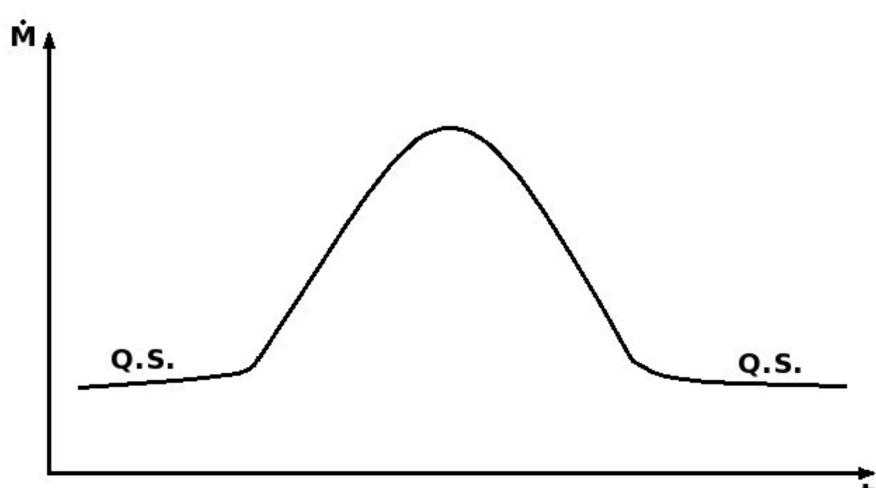
□ There must be a reason for this!

We understand the physics of the hysteresis curve MAGNETIZATION vs. EXTERNAL MAGNETIC FIELD, which is also traversed in the **counterclockwise** direction (see next slide).

We should similarly understand the physics of the qcurve.

Magnetization vs. External Mag. Field for ferromagnetic materials

Knowledge?


- So far, no physical interpretation has been proposed for the q-shaped curve.
- The question of the counterclockwise traversal is not even asked!
- There is a phenomenological interpretation of the q-diagram, with a central corona and an accretion disk.
- I will convince you that this phenomenological interpretation has a severe problem!

Assumptions in our work

We have made only two assumptions:

- During an outburst, the accretion rate as a function of time is a generic "bell-shaped curve" (next slide). This assumption is **self-evident**.
- At low accretion rates the accretion disk is ADAF-like (hot, geometrically thick, optically thin). At high accretion rates the accretion disk is Shakura-Sunyaev type (cold, geometrically thin, optically thick). This has been **confirmed** by MHD simulations (Ohsuga et al. 2009).

Accretion rate during outburst

t

Interpretation

I will now describe what the accretion disk looks like during the various stages of the outburst.

Hard State	 _
	<u></u>

Hard State	
Hard Intermediate State	ad -

Jet

- In all three of the previous states the inner part of the accretion disk is ADAF-like, the Cosmic Battery (Contopoulos & Kazanas 1998) works efficiently, and a compact jet is always present (Kylafis et al. 2012).
- Then, the jet line is approached.
- The thin disk cannot sustain the high magnetic field that was created in the thick disk. This is well known analytically and from MHD simulations.
- The magnetic field recombines and produces huge eruptions (eruptive jet).

Hard State	
Hard Intermediate State	
Jet Line	

Hard State	
Hard Intermediate State	
Jet Line	
Jet Line	

Soft State

• -

Soft State

0

Soft Intermediate State

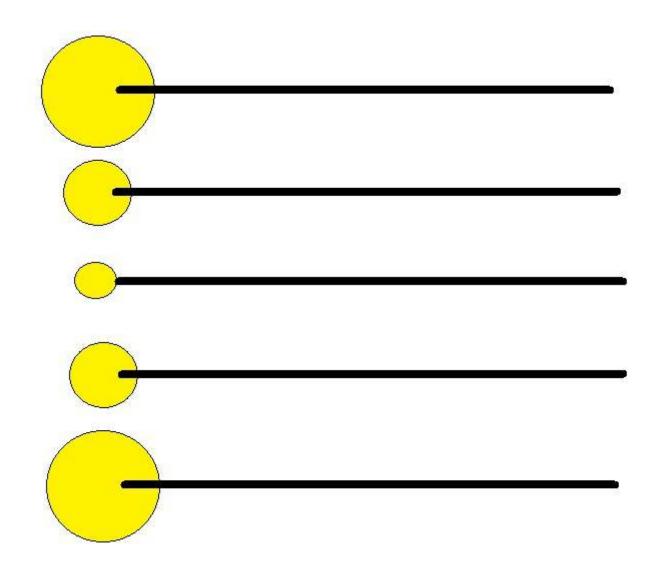
Jet

- Now, that a significant part of the accretion disk has become ADAF-like, the Cosmic Battery works again efficiently, and a jet begins to form.
- No eruptive phenomena occur. The jet builds up steadily and becomes detectable as a compact jet when the source approaches the hard state.
- This was confirmed in great detail by Corbel et al. last month. The jet is first optically thin and later becomes compact.

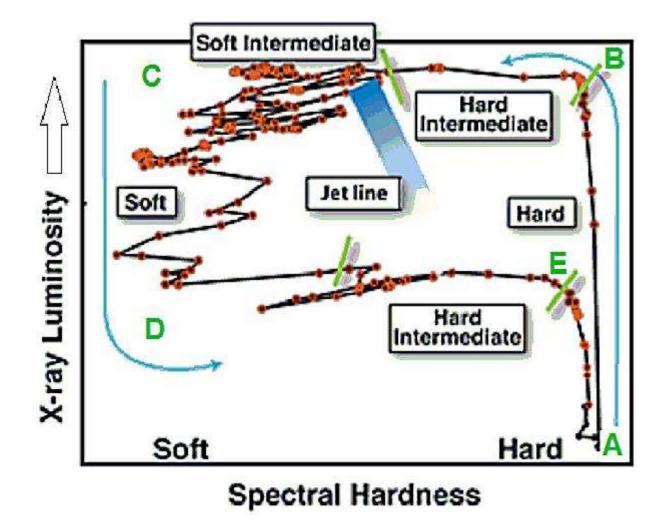
-	

Soft State		
Soft Intermediate State		
Second Jet Line		
Hard Intermediate State		

-


Soft State	
Soft Intermediate State	
Second Jet Line	
Hard Intermediate State	
Hard State	

Soft State	
Soft Intermediate State	
Second Jet Line	
Hard Intermediate State	
Hard State	
Quiescent State	


Simple phenomenological picture

What's wrong with the simple phenomenological picture of a central corona and an accretion disk?

Let's examine it.

GX 339-4

Symmetry breaking

- In the **physical** picture that we propose, the symmetry is broken.
- When the accretion rate increases at the beginning of the outburst, the thin disk is outside and the thick inside.
- When the accretion rate decreases, it is the opposite.

Hard State		
Hard Intermediate State		
Jet Line		
Soft Intermediate state		

Soft Intermediate State	
Second Jet Line	
Hard Intermediate State	
Hard State	
Quiescent State	

Conclusions

- We claim that no X-ray Transient will ever be seen to traverse the "q"-shaped curve in the clockwise direction.
- The disappearance of the jet will **always** be eruptive. The reappearance of the jet will **never** be eruptive.
- Our picture makes the specific prediction that the average timelag of the hard X-rays with respect to the soft X-rays will decrease with time both in the upper and the lower branches of the q-shaped curve.
- THANKS