
10 years of X-ray variabiliy in the Chandra Deep Field South

The long observing campaign of the Chandra Deep Field South allows to study AGN variability up to z~5 over a 10 year 
baseline. We find that variability is an ubiquitous property of AGNs which is detectable whenever sufficient statistic is available. 
We use Monte-Carlo simulations to account for biases introduced by the discontinous sampling and the low-count regime.   
The variability properties of our population are similar to what is expected based on nearby AGNs, due to the physics of the 
accretion process. Only for a handful of sources we observe spectral changes consistent with variations in the obscuring 
column density. However we show that simple models based on dependence of the PSD on BH mass and accretion rate still fail 
to account for the observed luminosity and redshift trends.
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Variability behavior and timescales
Comparing with simulations of constant sources, we find that 140 out of 740 (19%) sources are variable 
with Prob>95% . This fraction however is both affected by the low statistic of the majority of the 
sources (70 median counts), and the contamination by normal galaxies with LX<1042 erg s−1. In Figure 3 
we plot the cumulative fraction of variable sources, showing that at high count levels all sources are 
found to vary. The plot confirms the trend observed by Paolillo et al. (2004) in the 1 Ms dataset, and 
Young et al. (2011) in the 4 Ms data with lower time resolution, that variability is more easily detected in 
higher S/N sources and supports the view that all AGNs are intrinsically variable on a broad range of 
timescales.

The red-noise nature of CDFS AGNs is reflected in Fig.4. The likelihood of detecting variability on a 
specific timescale increases toward longer timescales in the source rest-frame. In addition the vast 
majority (∼ 75%) of AGNs display significant variability on short timescales (<1 day), with the totality of 
the population variable on timescales <3 days, thus indicating that part of the emission is produced in 
regions consistent with the size of the inner accretion disk and the broad-line region. The redshift 
distribution of variable and non-variable sources is shown in Fig.5.

Simulating the Effect of Sparse Sampling and Low Statistics
The Excess Variance is commonly used in literature to estimate the intrinsic lightcurve variance:

However this quantity represents the maximum likelyhood variability estimator only for identical/
normal distributed measurements errors and uniform sampling. In order to quantify the excess variance 
bias and uncertainty as variability estimator, in Allevato et al. (2013) we performed Monte Carlo 
simulations of realistic AGNs lightcurves. The simulations show (Fig.6) that variability measurements 
can be severely biased even in case of continuous monitoring), due primarily to red-noise leakage, and 
depending on the intrinsic power law slope. To recover the intrinsic variability amplitude such bias effect 
must be corrected for (see recipe in Allevato et al. 2013) using large samples or repeated measurements 
of the same source.
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Fig. 2. Cumulative fraction of variable sources in the CDFS, as a func-
tion of the net source counts. The number of variable sources increases
at higher counts (i.e. S/N) We show both the entire sample, and the sub-
sample of sources with LX > 1042 erg/s which minimizes contamination
by normal galaxies. Errorbars represent the 95% binomial uncertainty.

Fig. 3. Excess variance vs total source counts in the 0.5-8 keV band.
Variable and non-variable sources are plotted as solid and open circles
respectively. Note that a few sources lie outside the plotted range. The
continuous line shows the median 2σ upper limit on the excess variance
due to statistical uncertainties derived from simulations. Note that not
all variable sources are expected to lie above this limit, as their individ-
ual lightcurves may differ significantly in sampled timescales and S/N
ratio; the curve is shown to highlight the average trend of our sensitivity
to variability as a function of the total source counts.

deviation from the mean, observed among all the bins in the
lightcurve. This approach was useful since in the 1 Ms dataset
we had at most 11 points in each lightcurve and thus low vari-
ability levels could be hard to detect. The 4 Ms dataset on the
other hand has much better sampled lightcurves, and spans a
longer timescales, thus sampling lower frequencies where the
variability power of AGNs is expected to be larger due to the
red-noise PDS. Variability detected only in a single time bin is
thus more likely to be spurious or, when real, would reveal some
type of short flaring event which differs from the typical variabil-
ity observed in AGNs. We thus decided to use only variability
estimates which are averaged over the whole lightcurve in this
work, but we refer the reader to §XXX for further discussion on
such type of peculiar variability.

To quantify the variability power we use the normalized ex-
cess variance as the estimator of the intrinsic lightcurve variance,
as defined by (Nandra et al., 1997; Turner et al., 1999):

σ2NXS =
1
Nx2

N∑

i=1
[(xi − x)2 − σ2err,i], (1)

where σ2NXS measures the (squared) fraction of the total flux per
bin that is variable corrected for the statistical error, x i and σerr,i
are the count rate and its error in i-th bin, x is the mean count
rate of the source over the lightcurve, and N is the number of bin
used to estimate σ2NXS .

The formal error3 on σ2NXS , asymptotically for large N, is
given by the variance of the quantity (x i − x)2 − σ2err,i, i.e.

∆σ2NXS = S D/[x2(N)1/2], (2)

S D =
1

N − 1
N∑

i=1
{[(xi − x)2 − σ2err,i] − σ2NXS x2}2.

As discussed by Edelson et al. (2002) and Vaughan et al.
(2003), the above uncertainty is derived assuming stationar-
ity and uncorrelated Gaussian processes. While Vaughan et al.
(2003) derived a somewhat more accurrate expression based on
simulated lightcurves more suited to compare the temporal be-
havior in different energy bands, all these equations only account
for measurements errors and not to the random scatter intrinsic
to any red-noise process. The observed variance for the bright-
est sources (those whith the highest S/N ratio) can thus be ex-
pected to scatter more than simply predicted by these formulae.
Furthermore, as shown in Allevato et al. (2012) by means of
simulations, in the case of sparsely sampled lightcurves the ir-
regular sampling pattern introduces additional scatter that will
depend on the sampling scheme and the intrinsic (and a-priory
unknown) PDS shape, which may be a factor ! 2 than predicted
by the analytic formula.

Almaini et al. (2000) note that the excess variance, as defined
above, is a maximum likelihood (ML) estimator of the intrinsic
lightcurve variance only in the case of identical normally dis-
tributed errors; if this is not the case the latter authors point out
that there is no exact analytic ML solution that allows to esti-
mate the intrinsic variance thus requiring a numerical approach.
Allevato et al. (2012) has shown however that in practical appli-
cations, with realistic lightcurves and sparse sampling, the two
approaches yield identical results, as expected by the fact that
the sources of uncertainties described above are much larger than
those introduced by the use of an approximate solution. For such
3 Note that there was a typographical error in Nandra et al. (1997) as

clarified by Turner et al. (1999).
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Fig.2: Example of CDFS lightcurves in the 0.5-8 keV band, for 
sources of different flux and temporal behavior. The average count 
rate and error are marked by a continuous line and hatched region 
respectively. Faint AGN detection does depend on variability: some 
are undetected within observing campaigns of just a few days!

Fig.3: Cumulative fraction of variable sources in the CDFS, as a 
function of the net source counts. The number of variable sources 
increases at higher counts (i.e. S/N) .Errorbars represent the 95% 
binomial uncertainty.

Fig.5: X-ray luminosity vs redshift. Solid dots mark variable 
sources. The curves highlight three limits characterizing the 
survey, (solid: at the aimpoint, dashed: the average across the FOV,  
dot-dashed: the average limit for variability detection). The 
horizontal dotted line marks the LX = 1042 erg s-1 limit used to 
discriminate AGNs from galaxies.

Fig.1: Predicted break timescales compared to the observed ones. 
Tpredicted is derived from the the best fit (see inset) relationship to 
the combined sample of AGN and GBHs: log TB = 2.1 log MBH - 0.98 
log Lbol - 2.32.

Fig.7: Luminosity-variability plot for the high-statistics CDFS 
sources. The line show the bisector fits in different redshift ranges

           Ponti et al. (2011)

Variability dependence on redshift and AGN properties

The full 4Ms dataset allows to verify the variability-luminosity trends found at lower redshifts. In Fig.7  
we plot the measured excess variance against the intrinsic 0.5-7 keV luminosity for sources with > 600 
net counts. The high threshold allows to derive robust measurements of the intrinsic variance, and 
selects a nearly complete sample of sources in terms of variability. We measured the variability-
luminosity correlation through a weighted Least Squares Bisector for three subsamples with 0.5≤z<1.0, 
1.0≤z<2.0 and 2.0≤z<3.0, finding respectively σ2

NXV=L−0.71±0.02; σ2
NXV=L−1.1±0.1 and σ2

NXV=L−1.2±0.2.  In the 
low redshift range (0.5≤z<1.0) we find a close agreement with the values derived for local AGNs. The 
slopes of the higher redshift samples are steeper, but here the limited luminosity range does not allow 
to derive strong constrains.

In order to compare with more physically motivated models, we use those proposed by Papadakis et al. 
(2008) and Ponti et al. (2011), linking the luminosity and variability to the BH mass and accretion rates, 
but assuming different dependence of the PSD normalization. We compare the data (grouped in 
luminosity bins in order to include lower count-rate sources) to the models in Fig.8 and Fig.9. Both 
models explain the anticorrelation with an increase in BH mass. However the Papadakis model requires 
an increase in accretion rate at high redshifts, while the Ponti model seems to fail to explain the redshift 
dependence. Alternatively the observed increase of variability with redshift could be the result of the 
bias shown in Fig. 6, due to the different timescales sampled at every redshift, if all AGNs possess a 
characteristic PSD break as observed in low redshift AGNs (Fig.1).  Simulations to verify the importance  
of this effect are currently under way.

Fig.4: Left: Minimum detected variability timescales for sources with > 
200 counts; we show the fraction of sources as a function of the 
shortest timescale on which the source is found to be variable. The 
inset shows the cumulative distribution. Right: Distribution of all 
variability timescales among CDFS sources with >200 cnts.

Fig.6: Bias factor as a function of power-law slope β (from Allevato 
et al. 2013). Different symbols represent the bias of the excess 
variance using different sampling patterns. The solid line shows the 
theoretical bias prediction. Note that actual measurements are biased 
also in the case of a continuously sampled lightcurve!

Introduction
Our current understanding of the temporal properties of Active Galactic Nuclei are mainly based on a 
small sample of bright and nearby sources for which long monitoring campaigns have been possible. 
Recent work on nearby AGNs has shown that X-ray variability presents a characteristic timescale in 
the form of a break in the Power Density Spectrum, strengthening the link between galactic BH and 
SMBH (Markowitz et al. 2003; also see Uttley et al. 2002;  Mc Hardy et al. 2004). While the origin of 
such feature is still unclear, it has been suggested (Fig.1, McHardy et al.2006) that it correlate with BH 
mass and accretion rate, possibly following the relation:

tBreak∝(MBH)A/(Lbol)B

The extension of these results to distant AGNs is difficult due to the sparse sampling and the low 
statistics which do not allow to derive high quality PDS. 

CDFS X-ray Data and Lightcurve extraction
The Chandra Deep Field South (CDFS) dataset is described in Luo et al. (2008) and Xue et al. (2011). It 
consists of 54 observations collected by Chandra between 1999 and 2010, adding up to a total 
exposure time of 3.8 Ms; the individual observations have durations ranging from ∼10 ks up to 141 ks.
The data were reduced following Tozzi et al. (2006), to create event list and exposure maps in the 
0.5-8, 0.5-2 and 2-8 keV bands. We extract lightcurves as done in Paolillo et al. (2004) for the 1 Ms 
dataset. We start from the main source catalog of Xue et al. (2011), consisting in 740 X-ray sources. For 
each source we measured counts within a circular aperture with variable radius RS depending on the 
distance from the average aimpoint: RS = 2.4×FWHM arcsec, where FWHM=∑i=0,2 aiθi with 
a={0.678,−0.0405,0.0535}. The local background for each source was measured in a nearby circular 
annulus. We binned the data into individual observations: this allows to derive lightcurves with 54 
points over a 10 years interval. In total 673 (91%) of our sources have lightcurves with at least 25 bins 
and 564 (76%) are sampled by all 54 observations. The lightcurves were extracted both in the full 0.5-8 
keV band, as well as in the 0.5-2 and 2-8 keV bands in order to study the spectral variability of our 
sources; we further extracted lightcurves in the 2-8 keV rest-frame band for sources with available 
redshift 2.  An example of the CDFS lightcurves is shown in Fig.2.
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