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- 2 major components (α1~82%, α2~15%)
- All data from RXTE epoch 3
- note just RXTE/PCA data
- most of variability caused by the 'hard' component
- similar to GX 339-4
- spectral modeling ongoing 
- Buchan et al. (in prep.)

- 2 major components (α1~62%, α2~26%)
- Same dataset as in Belloni et al. (2000) 
- most of variability caused by the 'soft' component
- similar to Cyg X-3, but the second component more   
  stronger in the hard X-rays
- spectral modeling ongoing 
- Peris et al. (in prep.)

- 2 major principal components (proportions of variability:
  α1~68%, α2~23%)
- Data from a major radio flare episode (i.e. intermediate X-
  ray spectra)
- Most of the variability is caused by the 'soft' component
- The principal components can be attributed to two
  emission components: inverse-Compton scattering and    
  bremsstrahlung (see Method 6)
- Similar to GRS 1915+105
- Koljonen et al. (2013)

- 2 major components (α1~82%, α2~15%)
- Data from 2002/2003 outburst (e.g. Belloni
  et al. 2005)  
- most of variability caused by the 'hard'
  component
- similar to Cyg X-1
- spectral modeling ongoing 
- Koljonen et al. (in prep.)
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- Both principal components show hysteresis
- The normalization of α1 increases in the LH state and
  decreases when the spectra softens
- The normalization of α2 increases in the LH state,
  stays constant in the intermediate state and decreases
  slowly in the HS state
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Using spectrotiming analysis to 
eliminate spectral degeneracies

The case of Cyg X-3 and other X-ray binaries

Method
Principal Component Analysis (PCA)

Modeling the X-ray spectra of X-ray binaries (XRBs) often leads to a problem of degeneracy, i.e. multiple distinct models fit the 
observed data equally well, despite the excellent quality of the available data. In order to make sense of this degeneracy we need to 
take other data dimensions besides the spectral into an account. For this need X-ray timing data is readily available, and several 
methods have been developed to combine spectral and timing analyses. Here we review a method where the variability components 
of the X-ray spectra are revealed by employing principal component analysis to single out individual emission components causing 
the variability in the X-ray lightcurves across the spectral range. We have studied several XRB systems using data from RXTE and 
we show that most of the spectral variability of all sources can be attributed to two principal components. In two sources, Cyg X-3 
and GRS 1915+105, the dominating principal component is 'soft' while in two other sources, GX 339-4 and Cyg X-1, it is 'hard'.  

PCA is used here as a variability analysis tool which allows one to combine 
temporal and spectral information to identify various components of the spectrum 
based on their variability.

PCA finds patterns in a way that highlights the 
differences and similarities in the data set. By finding 
the "new coordinates" of the data set (i.e. the 
principal components) where the data points mainly 
cluster and ignoring the small scatter in other 
directions the dimensionality of the dataset is 
reduced, defined only by a few of these new 
coordinates.

We applied PCA to sets of X-ray spectra following the 
procedure presented in Malzac et al. (2006). One 
starts with calculating a covariance matrix from a 
stack of spectra F(En) measured at times tp, stating 
the variances between each n-dimensions. The 
eigenvectors of the covariance matrix form the "new 
coordinates" of the data and the accompanying 
eigenvalue states its proportion of variance. The data 
can then be expressed as a linear decomposition 
using only the most significant eigenvectors 
portraying the intrinsic variability of the data set.

Based on the significance order of the eigenvectors 
a variability spectrum can be constructed. This 
shows the energy-dependent variance across the 
energy range and can be related to the r.m.s. as 
r.m.s.(E) = σ(E)*F(E). Most of the source variance 
is typically attributed to two or three components 
with differing proportions along the energy range.

t1 t2 t3
tp-1 tp
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rgy

 (E
n)

flux (F)

time

The "normalization" of principal components can be 
plotted against each other in a so-called "scores 
plot". This can be used to determine how the 
components evolve during the time period in 
question, and whether there exists clustering for 
different states. On the left an example is shown 
where different spectral states have been colored in 
order to see the effect of the principal components. In 
this case a change in the second principal 
component (α2) drives the spectral state change.

Implications
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The averaged "normalization" or scores of the 
principal components over the individual pointings 
can be compared to the model fits. This can be used 
to determine the component or the parameter 
causing the variability. If the effect of a principal 
component on the energy spectra is equal in all 
energy bands then this will most likely correspond to 
a model component normalization parameter. If the 
effect is pivoting then it might correspond to some 
other parameter as well. This in turn can be used to 
rank models that do not exhibit correlations with the 
principal components.     

The eigenvectors can be examined to determine 
their influence on the energy spectrum. If all the 
evctor components have the same sign, the effect 
on the energy spectra is similar in all energy bands, 
i.e. the normalization of the spectra changes. If the 
vector components have opposite signs the effect 
on the energy spectra is a pivoting around a certain 
energy band.
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PCA shows that only two components are needed to explain the spectral variability of the 
above-mentioned XRBs. Thus, in principle only two 'variables' would be needed to fit the X-ray 
spectra throughout the spectral evolution of the sources. It is tempting to attribute these to the 
accretion disk and the corona directly on indirectly. However, for Cyg X-3 the best-fitting model 
satisfying the principal component evolution included Comptonization and bremsstrahlung, so 
clearly these systems can have separate emission components from each other. This work to 
attribute spectral models to the spectral variability is ongoing.   


