UNIVERSITY^{OF} BIRMINGHAM

Asteroseismology of exoplanet host stars: results from Kepler and prospects for PLATO

Bill Chaplin, School of Physics & Astronomy University of Birmingham + KASOC team PLATO Workshop, ESTEC, Noordwijk, 2013 July 30

Asteroseismic KOI ensemble

High-quality solar-like oscillations spectra of Kepler Objects of Interest

Asteroseismic KOI ensemble Target management

- Kepler restriction of ≤ 512 targets at 1-min short cadence (SC):
 - SC needed to detect oscillations in solar-type stars
 - Around SC 100 slots allocated to seismic KOIs
 - When target acquires KOI status, estimate probability of asteroseismic detection

As per: Chaplin et al. (2011), ApJ, 732, 54

Asteroseismic KOI ensemble Distribution in apparent magnitude: 120 KOIs

Asteroseismic KOI ensemble Improved stellar properties

Huber et al. (2013), ApJ, 767, 127

Asteroseismic KOI ensemble

Asteroseismic vs. transit lightcurve densities

> Huber et al., 2013 ApJ, 767, 127

Prospects for PLATO

- Noise performance:
 - The same as *Kepler* at same apparent magnitude
- No restrictions re: target management:
 - All observations at required rapid cadence for seismic detections in solar-type stars

Prospects for PLATO

- Compared to Kepler, PLATO will:
 - Observe much brighter targets
 - Observe many more targets
 (> factor 10 down to v~13)
- Complementary data...
 - Radial-velocity follow-up
 - Parallaxes, spectroscopic parameters, interferometric radii etc.

Prospects for PLATO

- From 2-yr long pointing phase:
 - Potential for a *few thousand* asteroseismic exoplanet host stars
 - Mid to late K dwarfs will have detectable oscillations if very bright

- Asteroseismology of solar-type stars:
 - Detection limit around $v\approx7$
 - Expect detections in approximately 3000 stars (assuming at least 1 month of data)
 - Compares with approximately 600 stars from KASC asteroseismic survey (v \approx 7 to
 - 11; 1 month of data per star)

Kepler's first rocky planet

Batalha et al. (2011), ApJ, 729, 27

Kepler-21: F-type subgiant

Was for a while the brightest KOI

UNIVERSITY

BIRMINGHAM

Howell et al. (2012), ApJ, 746, 123

Kepler-68: G-type dwarf Combining RVs and asteroseismology

Gilliland et al., 2013, ApJ, 766, 40

Kepler-36: G-type subgiant Combining TTVs and asteroseismology

Carter et al. (2012), Science, 337, 556

Transit Timing Variations (TTVs) Combining TTVs and asteroseismology

UNIVERSITY

BIRMINGHAM

Carter et al. (2012), Science, 337, 556

Accurate and precise masses

Combining TTVs and asteroseismology

UNIVERSITYOF

BIRMINGHAM

Carter et al. (2012), Science, 337, 556

Barclay et al., 2013, Nature, 494, 452

Small star hosting three planets, one smaller than Mercury

BIRMINGHAM

Spin-orbit alignment

- Information on history and dynamics of systems
- Asteroseismology to determine stellar angle of inclination:
 - Useful diagnostic in systems with transiting exoplanets
 - Independent of planet properties: ideal for multi-systems with small planets

Inference on stellar inclination

Example: dipole oscillation mode

BIRMINGHAM

Chaplin et al., 2013, ApJ, 766, 101

Chaplin et al., 2013, ApJ, 766, 101

Chaplin et al., 2013, ApJ, 766, 101

Two stars with multiple small planets

UNIVERSITY

BIRMINGHAM

Chaplin et al., 2013, ApJ, 766, 101

End

