Statistical validation of PLATO 2.0 planet candidates

Rodrigo F. Díaz

Laboratoire d'Astrophysique de Marseille

José Manuel Almenara, Alexandre Santerne, Claire Moutou, Anthony Lehtuillier, Magali Deleuil

PLATO 2.0 Science Workshop. ESA ESTEC, July 30th 2013.

Outline

- Planet Validation.
- Motivation in the context of PLATO 2.0
- The Planet Analysis and Small Transit Investigation Software (PASTIS).
- Testing PASTIS on synthetic data.
- The radial velocity contribution.

Talks by F. Bouchy and A. Santerne

Planet Validation (alla BLENDER)

- Use all the information in the transit LC to constrain possible false positives (FPs).
- Add additional constrains from other datasets: RV, AO, multi-band photometry, ...
- Evaluate relative occurrence of planets to surviving blends (use Galactic models, current knowledge on mult. systems, etc.)

Planet Validation (the Bayesian way)

Model comparison: based on the computation of the odds ratio.

• Hypotheses must be described by a model $\boldsymbol{\mathsf{M}}$ with parameter vector $\boldsymbol{\theta}.$

• The Bayes' factor is the ratio of the *evidence* for each model, defined as:

$$p(\mathsf{D}|\mathsf{H},\mathsf{I}) \equiv p(\mathsf{D}|\mathsf{M}) = \int d\theta \ p(\theta|\mathsf{M})p(\mathsf{D}|\theta,\mathsf{M})$$

• The evidence is a *k*-dimensional integral, generally intractable!

Motivation in the context of PLATO 2.0

- PLATO is expected to detect thousands of small-size planet candidates.
- Validation *will* be needed (unless reliance on Galactic priors is acceptable).
- RV confirmation is in principle be possible, but very time-demanding (see HARPS RV survey; talk by S. Udry). RV facilities likely limited to perform intense follow-up.
- Some stars will not be easily measured (fast rotators, hot stars, ...).
- High S/N of many candidates (e.g. S/N ~ 150 for a single Earth-size planet transit on 1-yr orbit around a mV = 8 star).
- Possible strategy: focus on validated planets to complete characterization (mass, eccentricity, bulk density, ...).

Planet Analysis and Small Transit Investigation Software

Rigorousness (fully-Bayesian approach) Flexibility (in the definition of FP scenarios) Speed (to be able to apply it to large samples)

The PASTIS data models

Tests on synthetic data

Kepler data KIC11391018 KOI189 Q4; SC

- Noise level near the median for SC targets of Q4.
- Planet transiting candidate. Already checked.
- For simplicity, just use light curve. In some cases the other observables dominates (cf. CoRoT-16, Ollivier et al. 2012).

Kepler data KIC11391018 KOI189 Q4; SC

Model **P**: "the signal is produced by a transiting extrasolar planet". Model **B**: "the signal is produced by a background eclipsing binary". + data model: "jitter is an additional source of Gaussian error."

S/N = 50; *b* = 0.5

Transiting Planets

Studied parameters

Transiting Planet	
Planet Radius [R _⊕]	$\{1.0; 4.4; 7.8; 11.2\}$
Impact Parameter <i>b</i>	$\{0.0; 0.5; 0.75\}$
Transit S/N	$\{20; 50; 150; 500\}$

Transit S/N independently varied from planet radius.

b = 0.75 near median of KOI distribution.

Planet Radius

Transiting Planets

Studied parameters

Transiting Planet	
Planet Radius [R _⊕]	$\{1.0; 4.4; 7.8; 11.2\}$
Impact Parameter <i>b</i>	$\{0.0; 0.5; 0.75\}$
Transit S/N	$\{20; 50; 150; 500\}$

Transit S/N independently varied from planet radius.

b = 0.75 near median of KOI distribution.

Planet Radius

Transiting Planets

Studied parameters

Transiting Planet	
Planet Radius [R _⊕]	$\{1.0; 4.4; 7.8; 11.2\}$
Impact Parameter <i>b</i>	$\{0.0; 0.5; 0.75\}$
Transit S/N	$\{20; 50; 150; 500\}$

Transit S/N independently varied from planet radius.

b = 0.75 near median of KOI distribution.

Planet Radius

S/N = 500; b = 0.5

Results (I: PLANET simulations)

 $B_{10} > 150$: very strong evidence

- Monotonic decrease of B_{PB} with planet radius, and S/N of transit.
- Minimum B_{PB} for b = 0.5.
- For b = 0.75, highest value of B_{PB}.
- \cdot S/N = 20 and 500 (not plotted) are completely inside and outside of shaded are, respectively.

q = 0.3; b = 0.5

-0.04

-0.02

0.00

Orbital Phase

0.02

0.04

0.46

0.48

0.50

Orbital Phase

0.52

0.54

Results (II: BEB simulations)

• Monotonic increase of B_{BP} with mass ratio q, snr of the secondary, and decrease with impact parameter.

• BEB model is not strongly chosen for *highest* dilution level at any q or snr.

• Secondaries with snr = 7 lead to strong evidence for the BEB hypothesis (except q = 0.1; b = 0.75)

The radial velocity contribution

Could RV measurements help us decide on some cases?

- Nordström et al. (2004) distribution of RV measurements in the Solar neighborhood used to BEB velocity.
- Velocity and bisector amplitudes are computed.

• Best-fit BEB model to PLANET simulations; RV amplitude clearly detectable.

Summary and Conclusions

- Planet validation is the only technique to establish the planetary nature of the smallest transiting candidates from CoRoT and Kepler.
- PASTIS correctly identifies both transiting planets *and* false positives if the signal is sufficiently high.
- Simulations of synthetic data show that BEB with a modest dilution are easily detectable as such. However, if the dilution is such that the secondary eclipse has signal-to-noise ratio ~ 2, the data cannot say much.
- For simulated PLANETS, only data from very-high-S/N transits provides strong support for the planet scenario.
- For the unresolved cases, the model priors will be the deciding factor. Other observations: AO, etc.
- Radial velocities can contribute in this point. Apparently more so in the case of planets than BEBs.