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Outline

•Planet Validation.

•Motivation in the context of PLATO 2.0

•The Planet Analysis and Small Transit 
Investigation Software (PASTIS).

•Testing PASTIS on synthetic data.

•The radial velocity contribution.
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Planet Validation (alla BLENDER)

• Use all the information in the transit LC to 
constrain possible false positives (FPs).

• Add additional constrains from other 
datasets: RV, AO, multi-band photometry, ...

• Evaluate relative occurrence of planets to 
surviving blends (use Galactic models, 
current knowledge on mult. systems, etc.)

Fressin et al. (2011)

M2 = 1.0 Msun; d = 5mag

Spitzer
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).
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Model comparison: based on the computation of the odds ratio.

Bayes’ factorModel prior ratio

Planet Validation (the Bayesian way)

• Hypotheses must be described by a model M with parameter vector θ.

• The Bayes’ factor is the ratio of the evidence for each model, defined 
as:

• The evidence is a k-dimensional integral, generally intractable!
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Motivation in the context of PLATO 2.0

• PLATO is expected to detect thousands of small-size planet 
candidates. 

• Validation will be needed (unless reliance on Galactic priors is 
acceptable).

• RV confirmation is in principle be possible, but very time-demanding 
(see HARPS RV survey; talk by S. Udry). RV facilities likely limited to 
perform intense follow-up.

• Some stars will not be easily measured (fast rotators, hot stars, ...).

• High S/N of many candidates (e.g. S/N ~ 150 for a single Earth-size 
planet transit on 1-yr orbit around a mV = 8 star).

• Possible strategy: focus on validated planets to complete 
characterization (mass, eccentricity, bulk density, ...).



Planet Analysis and Small 
Transit Investigation Software

Rigorousness (fully-Bayesian approach)

Flexibility (in the definition of FP scenarios)

Speed (to be able to apply it to large samples)
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etary transit, which had been identified as a false positive by
means of the changes in the bisector of the spectral line profile.

Unfortunately, due in part to the large number of parameters
as well as to their great flexibility, in most cases the false positive
models cannot be rejected. In this situation, since the planetary
model cannot be rejected either –otherwise the candidate would
not be considered further–, some sort of evaluation of the rela-
tive merits of the models has to be performed, if one model is to
be declared ”more probable” than the other. The concept of the
probability of a model being completely absent in the frequen-
tist statistical approach, this comparison can only be performed
through Bayesian statistics.

1.1. BLENDER - with a critique? / Motivation for this work

The BLENDER technique COMPLETE. CAN BLENDER
BE DONEWITHOUT STELLAR MODELS!!!?!?!?!?!

In this paper, we present a new technique for planet vali-
dation, based entirely in the obtention of the Bayesian odds ra-
tio between the planetary and false positive models. The pro-
cess includes defining the priors of the model parameters, sam-
pling from the posterior parameter distribution, and computing
the likelihood of the models in all sampled points. This steps are
done using a Markov Chain Monte Carlo (MCMC) algorithm.
The global likelihood or evidence of each model is then com-
puted using the thermodynamic integration method as described
in (Goggans & Chi 2004) and combined with the model priors
to give the models probability ratio.

ALL OF THIS IS DONE IN PASTIS, a python package.
In Section 2 we introduce the bayesian framework in which

this work is inscribed. The models of the blended stellar systems
and planetary objects are described in Section 5. In Section 3
we present the details of the MCMC algorithm used, and in
Section 4 we discuss the model priors and the computation of
the models probability ratio. We applied our technique to XXX
in Sect. 6, and we finally draw our conclusions and outline future
work in Section 7.

2. Bayesian Model Comparison
The Bayesian probability theory can be seen as an extended the-
ory of logic, where the propositions are not exclusively true or
false, but have a degree of ”plausibility” which can go from 0
to 1, with the two extremes corresponding to the classical cat-
egories of ”false” or ”true” (see, e.g. Jaynes 2003, chapter 1).
With this definition, and unlike the frequentist approach, the
Bayesian probability of any proposition or hypothesis, such as
”the transit events in OGLE-TR-33 are produced by a blended
stellar binary” can be precisely computed. To do this one relies
heavily on Bayes’ theorem:

p(Hi|D, I) =
p(Hi|I) · p(D|Hi, I)

p(D|I)
, (1)

where p(X|Y) is a continuous monotonic increasing function of
the plausibility of preposition X, given that Y is true (see Jaynes
2003, chapter 2). It ranges from 0 to 1, corresponding to im-
possibility and certainty of X|Y, respectively. We will refer to
this function as the probability of X given Y. In principle, Hi, D,
and I are arbitrary propositions, but the notation was not chosen
arbitrarily, though. Following Gregory (2005b), throughout this
work we will designate with Hi a proposition asserting that hy-
pothesis i is true, I will represent the prior information, and D

will designate a proposition representing the data. The probabil-
ity p(Hi|I) is called the hypothesis prior, and p(D|Hi, I) is known
as the evidence, or global likelihood, for hypothesis Hi, for a
given dataset D.

The objective is then to compute p(Hi|D, I), the posterior
probability of hypothesis Hi, for a set of competing hypothesis
Hi (i = 1, ...,N). However, to avoid the complication of comput-
ing the normalization constant p(D|I), we will content ourselves
with obtaining the odds ratio for all pairs of hypothesis3:

Oi j =
p(Hi|D, I)
p(Hj|D, I)

=
p(Hi|I)
p(Hj|I)

·
p(D|Hi, I)
p(D|Hj, I)

. (2)

The Oi j can therefore be expressed as a the product of two
factors: the priors ratio in the first term of the right-hand side of
the above equation, and the likelihood ratio, the second term of
the right-hand side. The former will be discussed in Sect. 4, the
latter is defined by:

p(D|Hi, I) =
∫

p(θi|Hi, I) · p(D|θi,Hi, I) · dθi , (3)

where θi is the parameter vector of model Hi. Note that this is
a k-dimensional integral, with k equal to the number of free pa-
rameters of model Hi, which is in general impossible to com-
pute analytically. We therefore use the method described by
Goggans & Chi (2004), which estimates the above integral using
samples of the likelihood of the model obtained with an MCMC
algorithm. We discuss the method and our implementation of it
in detail in Sect. 3.

An additional advantage of the Bayesian approach to model
comparison is the natural treatment of models with different
numbers of parameters. In this respect, Bayesian analysis has
a bult-in Occam’s razor that penalizes models according to the
number of free parameters they have. The so-called Occam fac-
tor is included in the likelihood ratio, as will be detailed in
Sect. 4.MAYBE EXPLAIN IT HERE?
COMPARISON WITH BIC! Requiere Gaussianity of the

posterior distribution (Liddle 2007; Husnoo et al. 2011). It pe-
nalizes even those parameters that are not constrain by the data,
while the evidence does not.

3. MCMC algorithm and the computation of the
Bayes factor

Markov Chain Monte Carlo (MCMC) algorithms allow sam-
pling from an unknown probability distribution, p(θ|D, I), given
that it can be computed at any point of the parameter space of
interest up to a constant factor. They have been widely used
to estimate the posterior distributions of model parameters (see,
for example ?), and hence their uncertainty intervals. Here, we
employ a MCMC algorithm to obtain samples of the likelihood
function that we will use to compute the evidence (eq. 3) using
the method by Goggans & Chi (2004).

The details and many of the caveats of the application of
MCMC algorithms to astrophysical problems, and to extrasolar
planet research in particular, have already been presented in the
literature (e.g. Tegmark et al. 2004; Ford 2005, 2006) and will
not be repeated here. We do mention, on the other hand, the char-
acteristics of our MCMC algorithm, for the sake of transparency
and reproducibility.
3 It can be easily shown that the individual probabilities can be com-

puted from the odds ratios, given that a complete set of hypothesis has
been considered, i.e. if

∑N
i=0 p(Hi|D, I) = 1 (Gregory 2005b, chapter 3).

2

MCMC



Tests on synthetic data



Synthetic data
Kepler data
KIC11391018
KOI189
Q4; SC

• Noise level near the median for SC targets of Q4.
• Planet transiting candidate. Already checked.
• For simplicity, just use light curve. In some cases the other observables 
dominates (cf. CoRoT-16, Ollivier et al. 2012).



Synthetic data

Model P: “the signal is produced by a transiting extrasolar planet”.

Model B: “the signal is produced by a background eclipsing binary”.

+ data model: “jitter is an additional source of Gaussian error.”

Kepler data
KIC11391018
KOI189
Q4; SC
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Table 4. Parameters for synthetic light curves

Transiting Planet

Planet Radius [R⊕] {1.0; 4.4; 7.8; 11.2}
Impact Parameter b {0.0; 0.5; 0.75}
Transit S/N {20; 50; 150; 500}
Background Eclipsing Binary

Mass Ratio {0.1; 0.3; 0.5}
Impact Parameter b {0.0; 0.5; 0.75}
Secondary S/N {2; 5; 7}

5.3. Modeling of systematic effects in the data

In addition, we use a simple model of any potential systematic

errors in the data not accounted for in the formal uncertainties.

We follow in the steps of Gregory (2005a), and model the addi-

tional jitter noise of our data as a Gaussian-distributed variable

with variance s2
. The distribution of the total error in our data

is then the convolution of the distribution of the known errors

with a Gaussian curve of width s. When the known error of the

measurements can be assumed to have a Gaussian distribution of

width σi
5
, then the distribution of the total error is also a Gaus-

sian with a variance equal to σ2

i + s2
.

In principle, the additional parameter s is uninteresting and

will be marginalized. Gregory (2005b) claims that this is robust

way to obtain conservative estimates of the posterior of the pa-

rameters. Indeed, we have found that in general, adding the jitter

term in the MCMC algorithm produces wider posterior distribu-

tions. This can be understood by considering that when jitter is

included, a larger range of models fit the data reasonably well.

Therefore, the confidence regions of the parameters are equally

enlarged. ANYTHING ELSE?

6. Application to synthetic light curves

The objective of this Section is to explore the capabilities and

limitations of our method. We performed numerous tests inject-

ing synthetic signals, both of planets and background eclipsing

binaries (BEBs), in real Kepler data and trying to validate the

system as if it were a real candidate. For the sake of simplicity,

we did not include radial velocity or photometric data, although

these datasets certainly play an important role in the planet vali-

dation process (Ollivier et al. 2012).

6.1. Synthetic light curves

To construct the synthetic light curves to be analyzed with

PASTIS we used the models described above. We produced

model light curves of transiting planets and BEBs with different

parameters to test our method in different conditions of signal-

to-noise, transit shape, and dilution. The parameters used are

presented in Table 4.

The synthetic signals were injected to the Kepler short-

cadence data of star KIC11391018. This target has a magnitude

14.3 in the Kepler passband, which is typical for the transiting

candidates that can be followed-up spectroscopically from the

5
The method being described is not limited to treat gaussian-

distributed error bars. In fact, any arbitrary distribution can be used

without altering the algorithm and models described so far. Only the

computation of the likelihood in equation 4 has to be modified accord-

ingly.

Table 5. Jump parameters and priors of the planet and BEB models used

to fit the synthetic light curves.

PLANET model
kr = R2/R1 Jeffreys(10

−3
, 0.5)

aR = a/R1 Jeffreys(2.0, 100.0)

Planet albedo Uniform(0.0, 1.0)

Mass ratio q Jeffreys(10
−7

, 8 × 10
−3

)

Orbital inclination i [deg] Sine(80, 90)

Linear limb darkening coefficient Uniform(0.0, 1.0)

BEB model
Primary Minit [M⊙] Jeffreys(0.1, 10)

Secondary Minit [M⊙] Jeffreys(0.1, 5)

Binary age

Binary z [dex] Uniform(-2.5, 0.5)

Binary distance [pc] Uniform(10, 10
4
)

Impact parameter b Uniform(0.0, 1.0)

Target Teff [K] Normal(5770, 100)

Target metallicity, z [dex] Normal(0.0, 0.1)

Target log g [cgs] Normal(4.44, 0.1)

Common parameters

Jitter, σJ [ppm] Uniform(0, 900)

Out-of-transit flux

ground (e.g. Santerne et al. 2012). Its noise level, measured

with the rms of the Combined Differential Photometric Preci-

sion (CDPP) statistics over 12 hours, is near the median of the

distribution for stars in the same magnitude bin (i.e. K p between

13.8 and 14.8) that have been observed in Short Cadence mode

in Quarter 4. These two conditions make it a typical star in the

Kepler target list. On the other hand, its located in the 82nd per-

centile of the noise level distribution of all (i.e. Long Candence)

Kepler target stars in this magnitude bin, demonstrating a bias

towards active stars in the Short Cadence target list. Addition-

ally, KIC11391018 exhibits planetary-like transits every around

30 days, which were taken out before injecting the model light

curves. The reason for choosing a transiting candidate XXXX it

has been checked by the Kepler team?.

For each synthetic light curve, the MCMC algorithm de-

scribed above was employed to sample from the parameter pos-

teriors. For simplicity, the orbital period, and time of eclipses

were fixed to the correct values; the eccentricity was fixed to

zero, and a linear limb darkening law was chosen and the cor-

responding coefficient was fitted. Ten independent chains of

700,000 steps each were run for each dataset, starting at random

points drawn from the joint prior. The jump parameter and the

priors are detailed in Table 5. After trimming the burn-in period

and thinning the chains using their correlation length, we made

sure that at least 1000 independent samples remained for each

simulation. When this was not the case, we launched additional

MCMC runs to reach this number of samples (see Table ??).

PARAMETERS; LimbDarkening LAW; ETC

Planet simulations

The planet model consists of a single star and a transiting planet

(i.e. a non self-emitting object). The target star was chosen to

have radius R1 = 1 R⊙ and mass M1 = 1 M⊙. As shown in

Table 4, we explored the dependence of our method on the radius

of the planet, the impact parameter (b) and the signal-to-noise
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Table 4. Parameters for synthetic light curves

Transiting Planet

Planet Radius [R⊕] {1.0; 4.4; 7.8; 11.2}
Impact Parameter b {0.0; 0.5; 0.75}
Transit S/N {20; 50; 150; 500}
Background Eclipsing Binary

Mass Ratio {0.1; 0.3; 0.5}
Impact Parameter b {0.0; 0.5; 0.75}
Secondary S/N {2; 5; 7}

5.3. Modeling of systematic effects in the data

In addition, we use a simple model of any potential systematic

errors in the data not accounted for in the formal uncertainties.

We follow in the steps of Gregory (2005a), and model the addi-

tional jitter noise of our data as a Gaussian-distributed variable

with variance s2
. The distribution of the total error in our data

is then the convolution of the distribution of the known errors

with a Gaussian curve of width s. When the known error of the

measurements can be assumed to have a Gaussian distribution of

width σi
5
, then the distribution of the total error is also a Gaus-

sian with a variance equal to σ2

i + s2
.

In principle, the additional parameter s is uninteresting and

will be marginalized. Gregory (2005b) claims that this is robust

way to obtain conservative estimates of the posterior of the pa-

rameters. Indeed, we have found that in general, adding the jitter

term in the MCMC algorithm produces wider posterior distribu-

tions. This can be understood by considering that when jitter is

included, a larger range of models fit the data reasonably well.

Therefore, the confidence regions of the parameters are equally

enlarged. ANYTHING ELSE?

6. Application to synthetic light curves

The objective of this Section is to explore the capabilities and

limitations of our method. We performed numerous tests inject-

ing synthetic signals, both of planets and background eclipsing

binaries (BEBs), in real Kepler data and trying to validate the

system as if it were a real candidate. For the sake of simplicity,

we did not include radial velocity or photometric data, although

these datasets certainly play an important role in the planet vali-

dation process (Ollivier et al. 2012).

6.1. Synthetic light curves

To construct the synthetic light curves to be analyzed with

PASTIS we used the models described above. We produced

model light curves of transiting planets and BEBs with different

parameters to test our method in different conditions of signal-

to-noise, transit shape, and dilution. The parameters used are

presented in Table 4.

The synthetic signals were injected to the Kepler short-

cadence data of star KIC11391018. This target has a magnitude

14.3 in the Kepler passband, which is typical for the transiting

candidates that can be followed-up spectroscopically from the

5
The method being described is not limited to treat gaussian-

distributed error bars. In fact, any arbitrary distribution can be used

without altering the algorithm and models described so far. Only the

computation of the likelihood in equation 4 has to be modified accord-

ingly.

Table 5. Jump parameters and priors of the planet and BEB models used

to fit the synthetic light curves.

PLANET model
kr = R2/R1 Jeffreys(10

−3
, 0.5)

aR = a/R1 Jeffreys(2.0, 100.0)

Planet albedo Uniform(0.0, 1.0)

Mass ratio q Jeffreys(10
−7

, 8 × 10
−3

)

Orbital inclination i [deg] Sine(80, 90)

Linear limb darkening coefficient Uniform(0.0, 1.0)

BEB model
Primary Minit [M⊙] Jeffreys(0.1, 10)

Secondary Minit [M⊙] Jeffreys(0.1, 5)

Binary age

Binary z [dex] Uniform(-2.5, 0.5)

Binary distance [pc] Uniform(10, 10
4
)

Impact parameter b Uniform(0.0, 1.0)

Target Teff [K] Normal(5770, 100)

Target metallicity, z [dex] Normal(0.0, 0.1)

Target log g [cgs] Normal(4.44, 0.1)

Common parameters

Jitter, σJ [ppm] Uniform(0, 900)

Out-of-transit flux

ground (e.g. Santerne et al. 2012). Its noise level, measured

with the rms of the Combined Differential Photometric Preci-

sion (CDPP) statistics over 12 hours, is near the median of the

distribution for stars in the same magnitude bin (i.e. K p between

13.8 and 14.8) that have been observed in Short Cadence mode

in Quarter 4. These two conditions make it a typical star in the

Kepler target list. On the other hand, its located in the 82nd per-

centile of the noise level distribution of all (i.e. Long Candence)

Kepler target stars in this magnitude bin, demonstrating a bias

towards active stars in the Short Cadence target list. Addition-

ally, KIC11391018 exhibits planetary-like transits every around

30 days, which were taken out before injecting the model light

curves. The reason for choosing a transiting candidate XXXX it

has been checked by the Kepler team?.

For each synthetic light curve, the MCMC algorithm de-

scribed above was employed to sample from the parameter pos-

teriors. For simplicity, the orbital period, and time of eclipses

were fixed to the correct values; the eccentricity was fixed to

zero, and a linear limb darkening law was chosen and the cor-

responding coefficient was fitted. Ten independent chains of

700,000 steps each were run for each dataset, starting at random

points drawn from the joint prior. The jump parameter and the

priors are detailed in Table 5. After trimming the burn-in period

and thinning the chains using their correlation length, we made

sure that at least 1000 independent samples remained for each

simulation. When this was not the case, we launched additional

MCMC runs to reach this number of samples (see Table ??).

PARAMETERS; LimbDarkening LAW; ETC

Planet simulations

The planet model consists of a single star and a transiting planet

(i.e. a non self-emitting object). The target star was chosen to

have radius R1 = 1 R⊙ and mass M1 = 1 M⊙. As shown in

Table 4, we explored the dependence of our method on the radius

of the planet, the impact parameter (b) and the signal-to-noise
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Table 4. Parameters for synthetic light curves

Transiting Planet

Planet Radius [R⊕] {1.0; 4.4; 7.8; 11.2}
Impact Parameter b {0.0; 0.5; 0.75}
Transit S/N {20; 50; 150; 500}
Background Eclipsing Binary

Mass Ratio {0.1; 0.3; 0.5}
Impact Parameter b {0.0; 0.5; 0.75}
Secondary S/N {2; 5; 7}

5.3. Modeling of systematic effects in the data

In addition, we use a simple model of any potential systematic

errors in the data not accounted for in the formal uncertainties.

We follow in the steps of Gregory (2005a), and model the addi-

tional jitter noise of our data as a Gaussian-distributed variable

with variance s2
. The distribution of the total error in our data

is then the convolution of the distribution of the known errors

with a Gaussian curve of width s. When the known error of the

measurements can be assumed to have a Gaussian distribution of

width σi
5
, then the distribution of the total error is also a Gaus-

sian with a variance equal to σ2

i + s2
.

In principle, the additional parameter s is uninteresting and

will be marginalized. Gregory (2005b) claims that this is robust

way to obtain conservative estimates of the posterior of the pa-

rameters. Indeed, we have found that in general, adding the jitter

term in the MCMC algorithm produces wider posterior distribu-

tions. This can be understood by considering that when jitter is

included, a larger range of models fit the data reasonably well.

Therefore, the confidence regions of the parameters are equally

enlarged. ANYTHING ELSE?

6. Application to synthetic light curves

The objective of this Section is to explore the capabilities and

limitations of our method. We performed numerous tests inject-

ing synthetic signals, both of planets and background eclipsing

binaries (BEBs), in real Kepler data and trying to validate the

system as if it were a real candidate. For the sake of simplicity,

we did not include radial velocity or photometric data, although

these datasets certainly play an important role in the planet vali-

dation process (Ollivier et al. 2012).

6.1. Synthetic light curves

To construct the synthetic light curves to be analyzed with

PASTIS we used the models described above. We produced

model light curves of transiting planets and BEBs with different

parameters to test our method in different conditions of signal-

to-noise, transit shape, and dilution. The parameters used are

presented in Table 4.

The synthetic signals were injected to the Kepler short-

cadence data of star KIC11391018. This target has a magnitude

14.3 in the Kepler passband, which is typical for the transiting

candidates that can be followed-up spectroscopically from the

5
The method being described is not limited to treat gaussian-

distributed error bars. In fact, any arbitrary distribution can be used

without altering the algorithm and models described so far. Only the

computation of the likelihood in equation 4 has to be modified accord-

ingly.

Table 5. Jump parameters and priors of the planet and BEB models used

to fit the synthetic light curves.

PLANET model
kr = R2/R1 Jeffreys(10

−3
, 0.5)

aR = a/R1 Jeffreys(2.0, 100.0)

Planet albedo Uniform(0.0, 1.0)

Mass ratio q Jeffreys(10
−7

, 8 × 10
−3

)

Orbital inclination i [deg] Sine(80, 90)

Linear limb darkening coefficient Uniform(0.0, 1.0)

BEB model
Primary Minit [M⊙] Jeffreys(0.1, 10)

Secondary Minit [M⊙] Jeffreys(0.1, 5)

Binary age

Binary z [dex] Uniform(-2.5, 0.5)

Binary distance [pc] Uniform(10, 10
4
)

Impact parameter b Uniform(0.0, 1.0)

Target Teff [K] Normal(5770, 100)

Target metallicity, z [dex] Normal(0.0, 0.1)

Target log g [cgs] Normal(4.44, 0.1)

Common parameters

Jitter, σJ [ppm] Uniform(0, 900)

Out-of-transit flux

ground (e.g. Santerne et al. 2012). Its noise level, measured

with the rms of the Combined Differential Photometric Preci-

sion (CDPP) statistics over 12 hours, is near the median of the

distribution for stars in the same magnitude bin (i.e. K p between

13.8 and 14.8) that have been observed in Short Cadence mode

in Quarter 4. These two conditions make it a typical star in the

Kepler target list. On the other hand, its located in the 82nd per-

centile of the noise level distribution of all (i.e. Long Candence)

Kepler target stars in this magnitude bin, demonstrating a bias

towards active stars in the Short Cadence target list. Addition-

ally, KIC11391018 exhibits planetary-like transits every around

30 days, which were taken out before injecting the model light

curves. The reason for choosing a transiting candidate XXXX it

has been checked by the Kepler team?.

For each synthetic light curve, the MCMC algorithm de-

scribed above was employed to sample from the parameter pos-

teriors. For simplicity, the orbital period, and time of eclipses

were fixed to the correct values; the eccentricity was fixed to

zero, and a linear limb darkening law was chosen and the cor-

responding coefficient was fitted. Ten independent chains of

700,000 steps each were run for each dataset, starting at random

points drawn from the joint prior. The jump parameter and the

priors are detailed in Table 5. After trimming the burn-in period

and thinning the chains using their correlation length, we made

sure that at least 1000 independent samples remained for each

simulation. When this was not the case, we launched additional

MCMC runs to reach this number of samples (see Table ??).

PARAMETERS; LimbDarkening LAW; ETC

Planet simulations

The planet model consists of a single star and a transiting planet

(i.e. a non self-emitting object). The target star was chosen to

have radius R1 = 1 R⊙ and mass M1 = 1 M⊙. As shown in

Table 4, we explored the dependence of our method on the radius

of the planet, the impact parameter (b) and the signal-to-noise
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Results (I: PLANET simulations)

b = 0.0 b = 0.50 b = 0.75

B10 < 3: inconclusive evidence
3< B10 < 20: positive evidence
20 < B10 < 150: strong evidence
B10 > 150: very strong evidence



Results (I: PLANET simulations)

b = 0.0 b = 0.50 b = 0.75

B10 < 3: inconclusive evidence

3< B10 < 20: positive evidence

20 < B10 < 150: strong evidence

B10 > 150: very strong evidence

• Monotonic decrease of BPB with planet radius, and S/N of transit.

• Minimum BPB for b = 0.5.

• For b = 0.75, highest value of BPB.

• S/N = 20 and 500 (not plotted) are completely inside and outside of shaded are, 
respectively.



Synthetic data

Background eclipsing 
binariesTable 4. Parameters for synthetic light curves

Transiting Planet

Planet Radius [R⊙] {0.0092; 0.0404; 0.0716; 0.1028}
Impact Parameter b {0.0; 0.5; 0.75}
Transit S/N {20; 50; 150; 500}
Background Eclipsing Binary

Mass Ratio {0.1; 0.3; 0.5}
Impact Parameter b {0.0; 0.5; 0.75}
Secondary S/N {2; 5; 7}

5.3. Modeling of systematic effects in the data

In addition, we use a simple model of any potential systematic

errors in the data not accounted for in the formal uncertainties.

We follow in the steps of Gregory (2005a), and model the addi-

tional jitter noise of our data as a Gaussian-distributed variable

with variance s2
. The distribution of the total error in our data

is then the convolution of the distribution of the known errors

with a Gaussian curve of width s. When the known error of the

measurements can be assumed to have a Gaussian distribution of

width σi
5
, then the distribution of the total error is also a Gaus-

sian with a variance equal to σ2

i + s2
.

In principle, the additional parameter s is uninteresting and

will be marginalized. Gregory (2005b) claims that this is robust

way to obtain conservative estimates of the posterior of the pa-

rameters. Indeed, we have found that in general, adding the jitter

term in the MCMC algorithm produces wider posterior distribu-

tions. This can be understood by considering that when jitter is

included, a larger range of models fit the data reasonably well.

Therefore, the confidence regions of the parameters are equally

enlarged. ANYTHING ELSE?

6. Application to synthetic light curves

The objective of this Section is to explore the capabilities and

limitations of our method. We performed numerous tests inject-

ing synthetic signals, both of planets and background eclipsing

binaries (BEBs), in real Kepler data and trying to validate the

system as if it were a real candidate. For the sake of simplicity,

we did not include radial velocity or photometric data, although

these datasets certainly play an important role in the planet vali-

dation process (Ollivier et al. 2012).

6.1. Synthetic light curves

To construct the synthetic light curves to be analyzed with

PASTIS we used the models described above. We produced

model light curves of transiting planets and BEBs with different

parameters to test our method in different conditions of signal-

to-noise, transit shape, and dilution. The parameters used are

presented in Table 4.

The synthetic signals were injected to the Kepler short-

cadence data of star KIC11391018. This target has a magnitude

14.3 in the Kepler passband, which is typical for the transiting

candidates that can be followed-up spectroscopically from the

5
The method being described is not limited to treat gaussian-

distributed error bars. In fact, any arbitrary distribution can be used

without altering the algorithm and models described so far. Only the

computation of the likelihood in equation 4 has to be modified accord-

ingly.

Table 5. Jump parameters and priors of the planet and BEB models used

to fit the synthetic light curves.

PLANET model
kr = R2/R1 Jeffreys(10

−3
, 0.5)

aR = a/R1 Jeffreys(2.0, 100.0)

Planet albedo Uniform(0.0, 1.0)

Mass ratio q Jeffreys(10
−7

, 8 × 10
−3

)

Orbital inclination i [deg] Sine(80, 90)

Linear limb darkening coefficient Uniform(0.0, 1.0)

BEB model
Primary Minit [M⊙] Jeffreys(0.1, 10)

Secondary Minit [M⊙] Jeffreys(0.1, 5)

Binary age

Binary z [dex] Uniform(-2.5, 0.5)

Binary distance [pc] Uniform(10, 10
4
)

Impact parameter b Uniform(0.0, 1.0)

Target Teff [K] Normal(5770, 100)

Target metallicity, z [dex] Normal(0.0, 0.1)

Target log g [cgs] Normal(4.44, 0.1)

Common parameters

Jitter, σJ [ppm] Uniform(0, 900)

Out-of-transit flux

ground (e.g. Santerne et al. 2012). Its noise level, measured

with the rms of the Combined Differential Photometric Preci-

sion (CDPP) statistics over 12 hours, is near the median of the

distribution for stars in the same magnitude bin (i.e. K p between

13.8 and 14.8) that have been observed in Short Cadence mode

in Quarter 4. These two conditions make it a typical star in the

Kepler target list. On the other hand, its located in the 82nd per-

centile of the noise level distribution of all (i.e. Long Candence)

Kepler target stars in this magnitude bin, demonstrating a bias

towards active stars in the Short Cadence target list. Addition-

ally, KIC11391018 exhibits planetary-like transits every around

30 days, which were taken out before injecting the model light

curves. The reason for choosing a transiting candidate XXXX it

has been checked by the Kepler team?.

For each synthetic light curve, the MCMC algorithm de-

scribed above was employed to sample from the parameter pos-

teriors. For simplicity, the orbital period, and time of eclipses

were fixed to the correct values; the eccentricity was fixed to

zero, and a linear limb darkening law was chosen and the cor-

responding coefficient was fitted. Ten independent chains of

700,000 steps each were run for each dataset, starting at random

points drawn from the joint prior. The jump parameter and the

priors are detailed in Table 5. After trimming the burn-in period

and thinning the chains using their correlation length, we made

sure that at least 1000 independent samples remained for each

simulation. When this was not the case, we launched additional

MCMC runs to reach this number of samples (see Table ??).

PARAMETERS; LimbDarkening LAW; ETC

Planet simulations

The planet model consists of a single star and a transiting planet

(i.e. a non self-emitting object). The target star was chosen to

have radius R1 = 1 R⊙ and mass M1 = 1 M⊙. As shown in

Table 4, we explored the dependence of our method on the radius

of the planet, the impact parameter (b) and the signal-to-noise
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Results (II: BEB simulations)

b = 0.0 b = 0.50 b = 0.75

B10 < 3: inconclusive evidence

3< B10 < 20: positive evidence

20 < B10 < 150: strong evidence

B10 > 150: very strong evidence

• Monotonic increase of BBP with mass ratio q, snr of the secondary, and decrease 
with impact parameter.

• BEB model is not strongly chosen for highest dilution level at any q or snr.

• Secondaries with snr = 7 lead to strong evidence for the BEB hypothesis (except 
q = 0.1; b = 0.75)



The radial velocity contribution

• Nordström et al. (2004) distribution of RV 
measurements in the Solar neighborhood used to 
BEB velocity.

• Velocity and bisector amplitudes are computed.

Could RV measurements help us 
decide on some cases?

• Best-fit BEB model to PLANET simulations; RV amplitude clearly detectable.



Summary and Conclusions

• Planet validation is the only technique to establish the planetary nature of the 
smallest transiting candidates from CoRoT and Kepler.

• PASTIS correctly identifies both transiting planets and false positives if the 
signal is sufficiently high.

• Simulations of synthetic data show that BEB with a modest dilution are easily 
detectable as such. However, if the dilution is such that the secondary eclipse 
has signal-to-noise ratio ~ 2, the data cannot say much.

• For simulated PLANETS, only data from very-high-S/N transits provides 
strong support for the planet scenario.

• For the unresolved cases, the model priors will be the deciding factor. Other 
observations: AO, etc.

• Radial velocities can contribute in this point. Apparently more so in the case 
of planets than BEBs. 




