

Service d'Astrophysique

DIDERO

STELLAR ROTATION AND MAGNETIC ACTIVITY:

USING ASTEROSEISMOLOGY

Rafael A. García

Service d'Astrophysique, CEA-Saclay, France

Special thanks to:

S. Mathur, K. Auguston, J. Ballot, T. Ceillier, T. Metcalfe, and D. Salabert,

I-INTRODUCTION

- The study of stellar dynamics is a challenge
 - Internal rotation
 - Modify stellar structure and evolution
 - e.g. increasing the mixing in radiative zones
 - Modify the determination of the age
 - Surface rotation
 - Gyrochronology:
 - Validation of the age-rotation relation
 - Universal law (stars harbouring planets)?
 - Magnetic Activity
 - In which conditions stars develop magnetic cycles
 - When are they regular?
 - Study of magnetic activity (history) on stars harbouring plants in the habitable zone

II-Determining the rotation rate of stars: Internal

II-INTERNAL ROTATION (MS)

[Chaplin et al. 2013 for some Kepler results on Kepler-50 and Kepler-65]

II-INTERNAL ROTATION

Mixed modes allow us to study the internal dynamics

- g-dominated mixed modes:
 - Sensitive to the deep radiative interior
- P-dominated modes
 - Sensibility weighted towards the outer layers

Frequency (μ Hz)

[Deheuvels, Garcia, et al. 2012]

II-INTERNAL ROTATION

[Mosser et al. 2012]

[Iben 1971; Sills & Pinsonneault 2000]

- Ensemble analysis used to obtain a proxy of the rotation rate of the deep radiative interior
- During RGB: (Assuming local conservation of ang. Momentum)
 - contradiction with core contraction
- Change from RGB to the clump can be related to the expansion of the non-degenerate helium burning core.
 - It can not explain all the reduction
 - significant transfer of internal angular momentum from the inner to the outer layers.

III-Determining the rotation rate of stars: Surface

III SURFACE ROTATION

When a star is magnetically active

Starspots crossing the visible disk of stars induce a modulation in the light curve

Virgo Blue Channel ²⁰⁰⁰ ⁰ ⁻¹⁰⁰⁰ ²⁰⁶⁰ ²⁰⁶⁰ ²⁰⁸⁰ ²¹⁰⁰ ²¹²⁰ ²¹⁴⁰

Solar Activity Minimum

III-SURFACE ROTATION (F-G, S-L STARS)

~540 solar-like stars showing p-mode oscillations have been measured (1 month) [Chaplin et al. submitted]

After solving Kepler calibration issues : On going extraction of the surface rotation rate

III-SURFACE ROTATION

Kepler analysis of 2483 M-type stars

[McQuillan et al. 2013]

IV-Magnetic activity cycles

IV-MAGNETIC ACTIVITY CYCLES

- Magnetic activity in stars:
 - Combination of Convection-Rotation-Magnetic Fields
- > What can offer asteroseismic observations to better understand stellar dynamics ?
 - Asteroseismic observations can potentially give access to:
 - Surface (differential rotation)
 - Internal (differential rotation)
 - Convection properties
 - Characteristic time and sigma of the granulation
 - Internal structure
 - Size of the convective envelope
 - Probing (or not) the existence of internal magnetic fields
 - Activity cycles
 - Through the light curves or with seismic activity proxies

IV-STELLAR ACTIVITY

IV-MAGNETIC ACTIVITY CYCLES

Anticorrelation between amplitude variation and frequency shifts P_{cyc} >120days

Complementary observations
✓ Ca HK: Mount Wilson index
✓ 0.31 (Active star)
✓ See a modulation indication of an activity cycle

[Mathur, Metcalfe et al. in preparation]

IV-STARS AS MHD LABS

1D Seismic model by AMP

Coupled to

3D MHD Model by ASH

Preliminary results: a cycle has been established

[Mathur et al. to be submitted]

[Augustson, Mathur, Brun et al. in prep.]

CONCLUSIONS (1)

Understand stellar dynamics Is required to better constraint exoplanet parameters

PLATO will be the only projected mission to address these scientific questions For a large sample of solar-like stars

Corporatio

Midi-Pyrénées

toulouse

Joint 3rd CoRoT Symposium & 7th Kepler KASC Workshop The Space Photometry Revolution

Espace Vanel, Toulouse (France) 6 – 11 July 2014

http://corot3-kasc7.sciencesconf.org

