Gaseous and Icy Planets

Ravit Helled Tel-Aviv University July 2013 PLATO 2.0 workshop

Why study planets (interiors)?

- Output Stand Planet Formation
- O Planet Characterization
 - Physics and Chemistry of proto-planetary disks
 - Habitability
 - Planetary Diversity

Solar System Giant Planets

Outer Planets

In the Solar System

Jupiter, Saturn, Uranus, Neptune

•Giant planets exist at large radial distances (> 5 AU)

•Mass is decreasing with radial distance.

•Metal enrichment is increasing with decreasing mass.

Wuchterl et al., 2000. PPIV.

In the Solar System

Composition of Extrasolar Planets

hean density

Mean density does NOT give us the distribution of the materials

A very large

Are there compositions which are impossible? more likely?

Composition of Extrasolar Planets

Mean density does NOT give us the distribution of the materials

A very large range of compositions will provide the *same* mean density

Solar System Outer Planets

Jupiter and Saturn

Gas planets (H, He, heavy elements)

Oranus and Neptune

• 'Icy' planets (ices, rocks, H/He atmospheres)

Modeling planetary interiors

 Basic idea: observations as constraints for interior models more accurate measurements → less freedom in modeling

Standard' modeling gas planets: 3 layers

- Central Core (rock/ice)
- Inner Envelope: helium rich, metallic hydrogen
- Outer Envelope ('atmosphere'): helium poor, molecular hydrogen

Standard' modeling icy planets: 3 layers

- Central Core (rocks)
- Inner Envelope: ices
- Outer Envelope ('atmosphere'): molecular hydrogen and helium

Making an interior model

- Assumptions: spherical symmetry & hydrostatic equilibrium
- Basic equations: mass conservation, hydrostatic equilibrium, heat transport, energy conservation, EOS: P(ρ,T)
- Interior models account for rotation (but usually solid-body!)

Theory of Figures (Zharkov & Trubitsyn, 1978):

The external gravitational potential of the planet

$$V_{\text{ext}}(r,\cos\theta) = \frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^{2n} J_{2n} P_{2n}(\cos\theta) \right]$$

a is the equatorial radius; J_{2n} gravitational moments

With GM and $J_{2n} \rightarrow$ constrain the interior density:

$$M = \iiint \rho(r,\theta) d^{3}\tau,$$

$$J_{2i} = -\frac{1}{MR_{eq}^{2i}} \iiint \rho(r,\theta) r^{2i} P_{2i}(\cos\theta) d^{3}\tau,$$

 $d\tau$ is a volume element - the integrals are preformed over the entire planetary volume

- J_2 , J_4 , J_6 are measured from Pioneer, Voyager and Cassini...
- Remember (!):
 - Constraints on the *density profile* of the planets
 - High-order harmonics provide information on outer regions
- Presence of a core is inferred *indirectly* from the model
- The core properties (composition, physical state) cannot be determined

Jupiter: Uncertainties with EOS

- Jupiter's interior: high P, T
- EOS is difficult to calculate (molecules, atoms, and ions coexist and interact).
- H/He EOS: theory & high pressure experiments
- Hydrogen EOS: deep in the interior metallic hydrogen, molecular to metallic transition (~ Mbar)
- Saumon & Guillot, 2004: Jupiter interior models using a careful study of the uncertainties in EOSs

Jupiter - recent models

- Militzer et al., 2008, 2-layer model:
 - Differential rotation is needed to fit J_4 (gravity \Leftrightarrow dynamics)
 - Results: $M_{core} \sim 15 18 M_{\oplus}$, $M_Z \sim 0 7 M_{\oplus}$
 - Atmosphere is water-poor water above the core
- Nettelmann et al., 2008, 3-layer model:
 - Solid-body rotation
 - Results: $M_{core} \sim 0 6 M_{\oplus}$, $M_Z \sim 15 32 M_{\oplus}$
 - Atmosphere is water-rich
- Nettelmann et al., 2011 (various EOS), 3-layer model:
 - Solid-body rotation
 - Results: $M_{core} \sim 0 18 M_{\oplus}$, $M_Z \sim 16 30 M_{\oplus}$
 - Atmosphere is water-rich
- Leconte and Chabrier, 2012, non-adiabtic interior:
 - Solid-body rotation
 - Results: $M_{core} \sim 0 M_{\oplus}$, $M_Z \sim 40 60 M_{\oplus}$
 - Atmosphere is water-rich

Jupiter: Results with uncertainties due to the hydrogen EOS

T. Guillot

Jupiter's Interior

• Uncertainties:

- M_{core}, Y, Z, water
- Core composition
- H/He EOS
- Results Summary:
 - M_{core} : 0 20 M_{\oplus}
 - M_Z : 1 40 M_{\oplus}
 - Total heavy elements mass 8 40 M_{\oplus}

Saturn

- Less uncertainty in EOS due to the pressure range (smaller mass) - but there are other complications...
- Saturn's luminosity is ~ 50% larger than predicted from homogeneous evolution models: helium rain → an energy source (e.g., Stevenson & Salpeter, 1977).
 Indeed Saturn's atmosphere is *He* depleted + evidence from EOS calculations.
- 2. Saturn's rotation period is unknown within a few minutes

Saturn: Results with uncertainties due to the hydrogen EOS (Voyager rotation period & gravity field)

Saumon & Guillot, 2004

Saturn's Rotation Period

- Measured radio periods: Voyager: 10h 39m 22s
 Cassini: 10h 45m 45s
- The radio periods do NOT represent the period of Saturn's bulk internal rotation we don't know Saturn's rotation period!

Saturn – updated models

Uranus and Neptune

For Uranus and Neptune only J_2 and J_4 are available

Standard models:

- Inner region: rocky core ~ 25%
- Ices (mostly H_2O) ~ 60-70%
- *H* and *He* atmosphere ~ 5-15%

A large range of possible internal structures \rightarrow composition is unknown

Uranus and Neptune

Uranus and Neptune

The gravity data is insufficient to constrain the planetary compositions

Reasons to believe they have water:
(1) Magnetic fields *– is it really?*(2) Water is abundant at these distances *– what about Pluto?*

Uranus & Neptune: Rotation Periods and Shapes

What are the rotation periods of Uranus and Neptune?

- Complex multipolar nature of magnetic fields
- Where are the magnetic fields generated?

Rotation period and share are important because they are used by interior models

Uranus & Neptune: Rotation Periods and Shapes

What are the rotation periods of Uranus and Neptune? Complex multipolar nature of magnetic fields Where are the magnetic fields generated? Rotation period and share are important because the <u>y are used</u> We need a Uranus and/or Neptune by interior models mission to improve the data Neptune: P ~ 17.46h (V: 16.11h) Uranus: Neptune 25 600 Voyager 25 500 24700 (interview) (inter 24 600 Voyager modified rotation periods that minimize the dynamical heights U: 17.24h → 16.58h; N: 16.11h → 17.46hs $25\,100$ 24 400 25000 24300 -50 50 -50 50 Latitude (Deg) Helled et al. 2010 Latitude (Deg)

Interior models with modified rotation

black/gray lines -Voyager rotation periods blue/turquoise lines - modified rotation periods (Helled et al., 2010)

Mass fraction of metals in the outer envelope (Z_1) and in the inner envelope (Z_2) 3-layer models of Uranus and Neptune

Nettelmann et al. 2013

Interior models with modified rotation

Giant impacts: tilt and internal flux

 Uranus is tilted and has very low internal flux – are these two connected? (D. Stevenson)

Neptune: Radial Collision

Uranus: Oblique Collision

Enough energy to mix the Core: Mixed and adiabatic interior, efficient cooling

Angular momentum deposition: Core, convection is inhibited \rightarrow slow cooling, tilt

Podolak & Helled, 2012

Giant impacts: tilt and internal flux

clearly, the internal structure can change with time.

Oblique Collision

Enoug and adiabatic interior, efficient cooling Angular momentum deposition: Core, convection is inhibited \rightarrow slow cooling, tilt

Podolak & Helled, 2012

Summary

- A clear difference between gas giants (J&S) and icy giants (U&N)
- Physical processes (helium rain, core erosion, dynamics) add complexity to interior models
- Output of the second second

Open Questions:

- Are giant planets adiabatic? homogeneously mixed? Do they have cores?
- What are Uranus and Neptune compositions/structures? How do such planets form?
- Item terms is the second se

• The PLATO connection:

- Enrichment of giant planets Z_{planet}/Z_{*} in exoplanets?
- Architecture of the planetary system: location of terrestrial/icy/giant planets
- Physical properties vs. radial distance & age
- Connect interior models with planet formation and evolution