

WP122000 – Non-seismic diagnostics and model atmospheres

Thierry Morel (Astrophysics Institute, University of Liège, Belgium)

Main deliverables:

- Procedures for deriving stellar parameters: L, Teff, radii, chemical abundances, ... Targeted accuracy: Teff to within 1% and R to within 2%.
- Grid of 1D/3D model atmospheres.
- Grid of limb-darkening coefficients.

WP122400 – Model atmospheres of M dwarfs

B. Plez (France)

WP122500 - Interstellar extinction

D. Marshall (France)

M. Asplund (Australia)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

M. Asplund (Australia)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

WP122200 – Fundamental parameters, chemical abundances and 1D model atmospheres

C. Allende Prieto (Spain)

Grid of 1D model atmospheres

Procedures for deriving Teff, radii and detailed chemical abundances corrected for 3D/NLTE effects.

WP122200 – Fundamental parameters, chemical

M. Asplund (Australia)

C. Allende Prieto (Spain)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

Grid of 1D model atmospheres

Procedures for deriving Teff, radii and detailed chemical abundances corrected for 3D/NLTE effects.

WP122300 – Limb-darkening coefficients

abundances and 1D model atmospheres

A. Claret (Spain)

Grid of limb-darkening coefficients corrected for 3D/NLTE effects.

WP122200 – Fundamental parameters, chemical

M. Asplund (Australia)

C. Allende Prieto (Spain)

Grid of 3D model atmospheres

3D/NLTE corrections for the abundances of individual lines, stellar parameters and centre-to-limb variations

Grid of 1D model atmospheres

Procedures for deriving Teff, radii and detailed chemical abundances corrected for 3D/NLTE effects.

WP122300 – Limb-darkening coefficients

abundances and 1D model atmospheres

A. Claret (Spain)

Grid of limb-darkening coefficients corrected for 3D/NLTE effects.

WP122400 – Model atmospheres of M dwarfs B. Plez (France)

Grid of 1D model atmospheres for M stars

Grid of 3D model atmospheres WP122100 – 3D/NLTE model atmospheres 3D/NLTE corrections for the abundances of individual lines, stellar parameters and M. Asplund (Australia) centre-to-limb variations Grid of 1D model atmospheres WP122200 – Fundamental parameters, chemical Procedures for deriving Teff, radii and detailed chemical abundances corrected abundances and 1D model atmospheres for 3D/NLTE effects. C. Allende Prieto (Spain) WP122300 – Limb-darkening coefficients Grid of limb-darkening coefficients corrected for 3D/NLTE effects. A. Claret (Spain) WP122400 – Model atmospheres of M dwarfs Grid of 1D model atmospheres for M stars B. Plez (France) WP122500 – Interstellar extinction Av along line of sight D. Marshall (France)

Impact on stellar and planetary parameters of fixing in spectroscopic analysis log*g* to value given by asteroseismology or transit observations

Huber et al. (2013)

Huber et al. (2013)

Torres et al. (2012)

Torres et al. (2012)

Torres et al. (2012)

Torres et al. (2012)

Method 1

logg: from photometry Teff and [Fe/H]: recomputed using logg constraint Method 2 logg, Teff, and [Fe/H]: from spectroscopy (no constraints)

Torres et al. (2012)

Method 1

logg: from photometry Teff and [Fe/H]: recomputed using logg constraint Method 2

logg: from photometry Teff and [Fe/H]: *not* recomputed using logg constraint

Method 1

logg: from photometry Teff and [Fe/H]: recomputed using logg constraint Method 2

logg: from photometry Teff and [Fe/H]: *not* recomputed using logg constraint

 $R_p \propto R_*$ $M_p \propto M_*^{2/3}$

Torres et al. (2012)

Conclusions

- Procedure adopted for deriving parameters of PLATO planet hosts will be to fix gravity to the more accurate asteroseismic or photometric estimate
- Can lead to relatively large differences with respect to unconstrained spectroscopic results (up to Δ Teff ~ 200 K and Δ [Fe/H] ~ 0.1 dex)
- Once logg fixed in spectroscopic analysis, necessary to iterate and recompute Teff and [Fe/H]
- Will significantly impact the planetary parameters (mass and radius)