PLATO Science Preparation Don Pollacco (Warwick) How the scene has changed in the last year.....

The Goals of Exoplanet Research

Long term goals of exoplanet research are to understand:

- how planetary systems form and evolve
- what makes a planet habitable
- if the earth is unique or if life has developed elsewhere

In order to reach these goals, we first need:

- to detect and characterise planetary systems
- around different types of stars and at all ages
- in particular rocky planets in the habitable zones of their stars

Goals of PLATO

opening up new era in exoplanet research

Scientific Objectives

PLATO science questions:

- Did the Earth form in a special place in the Universe and/or under extraordinary circumstances?
- How diverse are planets and planetary systems?
- How do planets and planetary systems differ with age?
- What are the characteristics of terrestrial planets in the habitable zones of stars?

PLATO will lay the ground for exoplanet research in the next decade by:

- detecting exoplanetary systems of all kinds
- accurately determine the bulk properties of planets
- determine accurate ages of planetary systems
- provide a huge legacy for future exoplanet characterization

PLATO Techniques (Summary)

Objective: detect and characterise (M, R, age) exoplanetary systems

- Census of exoplanets down to earth size in habitable zone
- Planets + host star
- Bright, nearby stars: exquisite knowledge of host stars + planet characterisation
- Unique database for complementary science: legacy

Techniques:

- photometric transits
- asteroseismology
- ground based spectroscopy

strong european expertise

Targets and sky coverage:

- 50% of the whole sky
- 85,000 bright cool stars, noise $< 3.4 \, 10^{-5}$ in 1 hr
- 3,000 very bright and nearby cool stars (m_V < 8)
- 1,000,000 cool stars, noise < 8.0 10^{-5} in 1 hr (m_V < 13)

detect & characterise earth-like planets

PLATO Science preparatory Management

- We need the best possible tools, algorithms, models, catalogues, observational support etc available for PLATO.
- This requires support from the science community for PLATO preparation and analysis after launch.
- Current major activity: Production of ESA "Yellow Book", used in down selection

PSPM Tasks

- Develop and specify state-of-the-art tools and algorithms for planet detection, parameter determination and asteroseismology of stars.
- Prepare the selection of the target fields and make available a high quality input catalogue.
- Organise the community for followup observing campaigns (confirmation, characterisation and, maybe, preparation)
- Prepare the community for exploitation of PLATO data
- After launch: analyyze PLATO data, update tools and methods, assist the community in PLATO analysis.

PLATO Science Preparation

Major work themes

- Science Coordination: overall PSP coordination coordinate community
- Exoplanet Science: transit detection, planet parameters
- Followup Coordination: organisation of ground based observations.
- Stellar Science: Stellar physics, oscillation modes, stellar evolution models
- Target/Field Characterisation: PLATO input catalogue, prepare field selection
- End-to-End Simulator: PLATO data simulator
- Additional Science: prepare for additional science program

PSPM consists of.....

 More than 120 scientists from 15 countries leading various work packages

 Each coordinator will lead a small team of participating scientists

Much of the European exoplanet community is involved at some level.

Find out more information about the PSPM and, in particular, how you can contribute:

http://www.oact.inaf.it/plato/PPLC/Home.html

- Information about the PLATO Mission
- Up-to-date work breakdown structure
- Short description of every work package
- Name of work package coordinators and contact information

The PLATO legacy

- a huge sample of characterized planets with known mass, radius and age, including terrestrial planets in the HZ of solar-like stars
- Large numbers of planets surrounding stars bright enough for detailed follow-up
 - → pioneers true comparative planotology and taxonomy of planet systems

A huge complementary science program:

- 1,000,000 of high-precision photometric stellar lightcurves
- 20,000 of these stars will allow for astroseismic characterization
- in synergy with Gaia: mass, age, rotation, distance, luminosity, radius
- → a breakthrough in stellar physics (e.g. stellar structure and evolution, internal mixing processes, stellar rotation, ages of globular clusters, young open clusters)