PLATO 2.0

Science objectives and consortium overview

Heike Rauer and the PLATO Team

From planet frequency to planet characterization

The next step: characterization!

What is characterizing a planet?

- Host star and Orbit \rightarrow incident stellar flux
- Mass, Radius \rightarrow mean densitiy, bulk composition
- Atmosphere \rightarrow scale height, composition
- Age \rightarrow evolution
- Biosphere \rightarrow life

Jhe PLATO 2.0 Mission

- PLATO will provide a large catalogue of highly accurate bulk planet parameters:
- radii (transit)
- masses (RV follow-up)
- mean densities
- ages (astroseismology)
- well-known host stars
- Focus on warm/cool Earth to super-Earths, up to the habitable zone of solar-like stars

- Focus on solar-like host stars to put the Solar System into context
- Observe bright stars for feasible RV follow-up and targets for atmosphere spectroscopy by e.g. JWST, E-ELT, future space missions
- Provide a huge legacy for planetary, stellar and galactic sciences

The Method

Characterize bulk planet parameters

Accuracy for Earth-like planets

 around solar-like stars:- radius ~2\%
- mass ~10\%
- age known to 10\%
bright host stars:

Techniques

Example: Kepler-10 b
Photometric transit

Asteroseismology mass and age of host stars

1. Large separations $\Delta_{0} \propto \sqrt{ } \mathrm{M} / \mathrm{R} 3$
\rightarrow mean density
2. Small separations d_{02}
\rightarrow probe the core \rightarrow age
3. Inversions + mode fitting
\rightarrow consistent ρ, M, age

For example: analysis of HD52265
(Lebreton \& Goupil, in prep.):

- ,classical' analysis (e.g. gyrochronology, H\&K lines, Li, X luminosity, fixed α): 0.5-4.2 Gyr
- Astroseismology: 2.1-2.6 Gyrs

PLATO instrument

- Cameras are in groups
- Offset to increase FoV

Observing strategy

High-number detections need wide field, large orbits need long pointings. PLATO optimizes via:

- 6 years nominal science operation
- 2 long pointings of 2-3 years + step-and-stare phase (2-5 months per pointing) Target bright stars:
- 4-11 mag for super-Earths detection and full planet and host star characterization \rightarrow survey ~85,000 stars
- 11-13 mag for super-Earths detection
\rightarrow survey in total1,000,000 stars

PLATO 2.0 Science objectives

Key questions and themes:
> Is our Solar System special? Is there another system like ours?
> How do planetary systems form?
> How do planets and systems evolve?
> How abundant are low-mass planets with atmospheres?

- Advance stellar science
> Galactic structure and evolution

PLATO 2.0 Science objectives

- Determine diversity of bulk planet properties up to Earth-like planets at $\sim 1 \mathrm{AU}$
- Detect exomoons, planetary rings, Trojan planets; planets around giants and cool dwarfs
- Detect and characterize planets around stars with different metallicity, age, activity, system architectures, ...
- Correlate planet bulk properties and system architectures with age (young and old stars)
- Constrain which planets likely have atmospheres
- Improve stellar models via astroseismology
- Probe galaxy structure and evolution using red giants
- Calibrate stellar gyrochronology

Bulk properties of Earth-like planets up to the HZ

Status super-Earths detection and characterization

Bulk properties of Earth-like planets up to the HZ

Status super-Earths detection and characterization

Transits and mass from RV
Mass from TTVs

Bulk properties of Earth-like planets up to the HZ

Status super-Earths detection and characterization

Transits and mass from RV
Mass from TTVs

Main target range for PLATO 2.0 characterization (transit + RV)

- Diversity of bulk proerties

- Radii (masses) can differ by factor ~ 2 for the same mass (radius)
- Constraining composition of small planets requires accurate parameter measurements:
 radius $\sim 2 \%$, mass $\sim 10 \%$

Mean density

Relative Error in Mean Density, \%

How accurate?

> Mass-radius relationship $R_{p} \equiv c M_{p}{ }^{\beta}$
> Super-Earths

$$
\beta=\frac{1}{4}
$$

Atmosphere - interior

Planets with
1 Earth radius, but different mass ($\pm 20 \%$) hense density

Noack et al., 2013, submitted

- Iron to silicate ratio is related to formation scenarios
- Atmosphere outgassing rates differ for stagnant lid and plate tectonic mode dominated planets
- PLATO 2.0 can provide bound on interior-surface- atmosphere relationships due to a large sample of well-known low-density planets

Planet formation and evolution

Planets with measured mass and radius:

- Not all density-mass combinations are realized. How about small, terrestrial planets?
- One order-of-magnitude diversity in mean density found for a given mass. What is the composition and internal structure?
- What is the observed critical core mass?
- Can super-massive rocky planets exist? How are they formed?

Planet formation and evolution

Planet formation and evolution

Black dots: Planet synthesis population
(Mordasini et al., 2013)

- Not all density-mass combinations are realized. How about small terrestrial planets?
- One order-of-magnitude diversity in mean density found for a given mass. What is their composition and internal structure?
- What is the observed critical core mass?
- Can super-massive rocky planets exist? How are they formed?
- Do large numbers of lowmass planets with H atmospheres exist?

Small Planets with atmospheres

H. Rauer, DLR, 2013-7-26 (based on exoplanet.eu)

Planets at intermediate distances

All known planets with measured mean densities.

Exolanets with measured mean densities and $P \geq 50$ days

Planets at intermediate distances:

- are less affected by stellar radiation and winds (e.g. heating, atmospheric losses, ...)
- allow for temperate climate, hence habitable conditions.
- are less affected by tidal forces (e.g. dynamical evolution)
- probe different regions for planet formation and migration

Planets at intermediate distances

All known planets with measured mean densities.

Exoplanets with measured mean densities and $P \geq 50$ days

Planets at intermediate distances:

- are less affected by stellar radiation and winds (e.g. heating, atmospheric losses, ...)
- allow for temperate climate, hence habitable conditions.
- are less affected by tidal forces (e.g. dynamical evolution)
- probe different regions for planet formation and migration

Detection and characterization performance for Earth-like planets

Planet detection and

characterization performance of
PLATO 2.0 for Earth-like planets (≤ 2
$\mathbf{R}_{\text {earth }}$), hence transit + bright RV target + astroseismology:

- For short-periods, $\mathrm{P}<50$ days and in HZ of cool dwarfs:
>1000 super-Earths transits
- In HZ of Solar-like stars (>0.8 AU):
~40-100 super-Earths transits
yield of fully characterized small planets [with asteroseismology and RV]

- RV follow-up coordinated during PLATO 2.0 mission will focus on scientifically favored targets. (see talk by Stephane Udry)
- Huge legacy for further planet characterization

Galactic structure

Miglio et al. $(2012,2013)$

Miglio et al. $(2012,2013)$

- Probe structure and evolution of our galaxy by measuring stellar distances (from Gaia) and ages (from PLATO red giant stars)
- Calibrate gyrochronology of stars via age-rotation relationship by age from astroseismology and rotation periods from spots
- Perform asteroseismology of blue super-giants (progenitors of corecollapse super-novae) to understand chemical enrichment of galaxies

- The PLATO Consortium

Main Partners:

\square	Austria
\square	Belgium
\approx	Brazil

- Denmark

France
\square Germany
Hungary
\square Italy
©
Portugal
\because Spain
\square Sweden

+ Switzerland
Nㅣㅈㅔ United Kingdom

Consortium Structure

How to be involved and support the PLATO 2.0 mission

- Become part of the PLATO 2.0 team and contribute to
- Payload activities (contact Heike Rauer, Institute for Planetary Research, DLR)
- PLATO Data Center activities (contact: Laurent Gizon, MPI for Solar System Research)
- PLATO Science Preparation activities (contact: Don Pollacco, Univ. Warwick)
- Become co-author on publication on PLATO 2.0 science (draft available for further contributions)
- More information on PLATO 2.0 at:
http://sci.esa.int/plato/
and
www.oact.inaf.it/plato/PPLC/

$$
0
$$

Characterize diversity

Kepler: frequency of terr. planets

PLATO:

known rocky exoplanets

CHEOPS, TES: bulk
Chari

Additional slides. Not used.

PLATO 2.0 Science objectives

$>$ Is our Solar System special? Is there another system like ours?
> How do planetary systems form?
> How do planets and systems evolve with age?
> How many low-mass planets have atmospheres?
> Advance stellar science
> Galactic structure and evolution

- Determine diversity of bulk planet properties up to Earth-like planets at $\sim 1 A U$
- Detect exomoons, planetary rings, Trojan planets; planets around giants and cool dwarfs
- Detect and characterize planets around stars with different metallicity, age, activity, system architectures, ...
- Correlate planet bulk properties and system architectures with age (young and old stars)
- Constrain which planets likely have atmospheres
- Improve stellar models via astroseismology
- Probe galaxy structure and evolution using red giants
- Calibrate stellar gyrochronology

Planet formation and evolution

Planet synthesis population from:
Mordasini et al., 2013)

- Not all density-mass combinations are realized. How about small terrestrial planets?
- One order-of-magnitude diversity in mean density found for a given mass. What is their composition and internal structure?
- What is the observed critical core mass?
- Can super-massive rocky planets exist? How are they formed?

Improve stellar models

Asteroseismology mass and age of host stars

Normalized mean small separation as a function of the mean large separation and evolutionary tracks (blue solid lines). Horizontal dotted lines are isochrones in 1 Gyr steps (White et al. 2011)

1. Large separations $\Delta_{0} \propto \sqrt{ } \mathrm{M} / \mathrm{R} 3$ \rightarrow mean density
2. Small separations d_{02} \rightarrow probe the core \rightarrow age
3. Inversions + mode fitting
\rightarrow consistent ρ, M, age

Mean density and composition

Current uncertainties in mean density of super-Earths:

- $\sim \pm 6 \%$ in radius
- $\sim \pm 20 \%$ in mass

Constrain planet interior

- Planet interior models can be constrained if reasonable assumptions can be made, e.g.: assume a silicate-Fe mixture

1 Earth size planet

Noack et al. 2013, submitted
\rightarrow With PLATO accuracies core-mantle ratios can be well constraint
\rightarrow Allows us to study link to terrestrial planet atmospheres when combined with spectroscopic follow-up

Interior - atmosphere

For example assume the following scenario: Earth radis planet, stagnat-lid regime
ratio of core radius to planet radius

Noack et al. 2013, submitted

\rightarrow Needs accurate radii and masses of terrestrial planet samples to constrain core/mantle ratio

Limited atmospheric CO_{2} from outgassing rates

Interior dynamics modeling of an Earth-sized, Earth-like stagnant-lid planet:

- Large core/planet radius ratio \rightarrow little/no outgassing, due to pressure dependence of solidus

Mantle volatiles after 4.5 Gyrs of thermal evolution:

Noack et al., 2013, submitted

Interior-atmosphere relationship for stagnant lid planets

Noack et al. submitted

