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Introduction

PLATO mission

Scientific goals:

study exoplanetary systems as a whole

mass, radius, age determination of host stars

gain a better understanding of stars

Asteroseismology is extremely important because of its ability to
probe stellar interiors and its high precision
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Asteroseismology

Direct approach

description: search for optimal model in a restricted parameter
space

advantages: simplicity, physically coherent models

Inversion methods

description: adjust the structure of a reference model so as to
match the observed frequencies

advantages: extracts more information from frequencies, open to
new physics

Comparison

rather than opposing each other, the two approaches are
complementary:

the direct approach can provide an initial model for an inverse
method
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Classification of inversion methods

Inversion
methods

Linear Non-linear

RLS OLA Non-linear
RLS

Differential
response
inversion

MOLA SOLA
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Linear inversion methods

assumption: reference model sufficiently close to real star so that:

frequency
differences

structural
differences

linear relation

Rotation profile:
νn`m − νn`0

m
=

∫ R

0

K n`
Ω (r)Ω(r)dr

Structural change:
δν

ν
=

∫ R

0

[
K n`

c2 ρ(r)
δc2

c2
+ K n`

ρ c2

δρ

ρ

]
dr

the kernels K n`
Ω , K n`

c2 ρ, and K n`
ρ c2 are deduced from the variational

principle

Goal: inverse above integral relations
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Linear inversion methods

Averaging and cross-term kernels

linear inversion ⇒ solution is a linear combination of frequency
differences:

Ωinv(r0) =
∑
n`

cn`(r0)
νn`m − νn`0

m
=

∫ R

0

[∑
n`

cn`(r0)K n`
Ω (r)

]
︸ ︷︷ ︸

Kavg(r0,r)

Ω(r)dr

δc2
inv(r0)

c2(r0)
=

∑
l

cl
δνl

νl
=

∫ R

0

∑
l

clK
l
c2 ρ︸ ︷︷ ︸

Kavg(r0,r)

δc2

c2
dr +

∫ R

0

∑
l

clK
l
ρ c2︸ ︷︷ ︸

Kcross(r0,r)

δρ

ρ
dr

Kavg = averaging kernel (e.g. Christensen-Dalsgaard et al., 1990)

Kcross = cross-term kernel
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Linear inversion methods

Error propagation

the observational errors propagate into the result as follows:

σf (r0) =

√∑
l

c2
l σ

2
l

other sources of error are not taken into account in this formula:

poorly localised averaging kernel
strong cross-term kernel
underlying model too far from star

Two approaches

RLS: Regularised Least-Squares

OLA: Optimally Localised Averages
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The RLS method

RLS: Regularised Least-Squares

Goal: minimise frequency differences by adjusting internal profiles

minimisation of following cost function:

J(f ) =
L∑

l=1

{
ν l

m−ν
l
0

m −
∫ R

0
K l

Ω(r)f (r)dr

σl

}2

︸ ︷︷ ︸
fit data

+ Λ

〈
1

σ2

〉∫ R

0

{
d2f

dr2

}2

dr︸ ︷︷ ︸
regularisation

where:

f =
∑

i

aiφi (r) = the function we’re trying to invert

σl = observational errors

Λ = regularisation trade-off parameter
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The OLA methods

OLA: Optimally Localised Averages

Goal: optimise the averaging kernels

MOLA: Multiplicative OLA (Backus & Gilbert, 1968)

J(cl(r0)) =

Z R

0

J(r0, r) [Kavg(r0, r)]2dr| {z }
fit data

+
tan θ

〈σ2〉

LX
l=1

(clσl)
2

| {z }
regularisation

+λ


1−

Z R

0

Kavg

ff
| {z }
Kavg unimodular

SOLA: Subractive OLA (Pijpers & Thompson, 1992, 1994)

J(cl(r0)) =

Z R

0

ˆ
T (r0, r)| {z }
target

−Kavg(r0, r)
˜2

dr + . . .

MOLA method: fewer free parameters

SOLA method: less computationally expensive (1 matrix inversion)
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Some examples

The solar rotation profile
(Schou et al., 1998, see also Thompson et al., 2003)
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Some examples
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Rotation profile of a lower-giant-branch star
(Deheuvels et al., 2012)
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Stellar parameters

structural inversions are difficult for stars other than the Sun, due to
the limited number of modes (e.g. Basu et al. 2002)

one strategy is to invert stellar parameters rather than structural
profiles

How does it work?

δρinv(r0)

ρ(r0)
=

∫ R

0

Kavg(r0, r)
δρ

ρ
dr +

∫ R

0

Kcross(r0, r)
δΓ1

Γ1
dr

an inversion gives you a weighted average of the underlying profile

idea: directly search for the appropriate weighting which yields the
stellar parameter

carry out a SOLA inversion with a suitable target function:

Target function =
4πr2ρR

M
⇒ stellar mean density

D. R. Reese Update on inversion methodologies



Introduction Linear inversion methods Non-linear inversion methods Conclusion

Stellar parameters

structural inversions are difficult for stars other than the Sun, due to
the limited number of modes (e.g. Basu et al. 2002)

one strategy is to invert stellar parameters rather than structural
profiles

How does it work?

δρinv(r0)

ρ(r0)
=

∫ R

0

Kavg(r0, r)
δρ

ρ
dr +

∫ R

0

Kcross(r0, r)
δΓ1

Γ1
dr

an inversion gives you a weighted average of the underlying profile

idea: directly search for the appropriate weighting which yields the
stellar parameter

carry out a SOLA inversion with a suitable target function:

Target function =
4πr2ρR

M
⇒ stellar mean density

D. R. Reese Update on inversion methodologies



Introduction Linear inversion methods Non-linear inversion methods Conclusion

Stellar parameters

What parameters are accessible?

total angular momentum (Pijpers, 1998)

mean density (Reese et al. 2012)

acoustic radius (Buldgen, Master’s thesis, 2013)

age indicator, based on small frequency separation (Buldgen,
Master’s thesis, 2013)

. . .

Non-linear extension

purpose: extend the inversion’s range of application

applies to: mean density and acoustic radius

optimally scaling the reference model before carrying out the
inversion
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Non-linear inversion methods

a second strategy for structural inversions in stars other than the Sun

useful for stars with mixed modes which are highly sensitive to
structural changes

applies even when the reference model is far away from true structure

Two approaches

frequency-based approach

approach based on internal phase-shifts
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Non-linear RLS

Description

iterated RLS inversions

minimisation of the following cost function:

J(f ) =
∑

i

(
νobs
i − νtheo

i (f )

σi

)2

+ Λ {regularisation term}

Different works

Antia (1996): inversion on (ρ, Γ1), regularisation of
(
δρ
ρ ,

δΓ1

Γ1

)
Reese (ongoing): inversion on ρ, fixed Γ1 profile, regularisation of ρ
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Regularisation

clearly, the regularisation term is unsuitable:

Λ

∫ Rcut

0

(
∂2ρ

∂r2

)2

dr

therefore, a different regularisation term was tested out:

Λ

∫ Rcut

0

(
∂2 (ln ρ)

∂r2

)2

dr
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Differential Response Inversion

Description

1 Discretise (ρ, Γ1) profiles up to
a truncation point.

2 At the observed frequencies,
obtain partial wave solutions
and associated phase shifts.

3 Adjust model so that phase
shifts become a function of
frequency only.

Various articles

Vorontsov (1998, 2001),
Roxburgh (2002, 2010)

4EVXMEP�[EZI�WSPYXMSR

(Roxburgh & Vorontsov, 2003)
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An example

Favourable Unfavourable
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r/R
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Inverted
Initial guess

0.3µHz noise
l=0-3, ν=1-5mHz

in 5 realizations

350

r/R
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r/R
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ρ(
g 

cm
-3

)

Exact
Inverted
Initial guess

0.3µHz noise
l=0-2, ν=2-4mHz

in 5 realizations

(Roxburgh, 2002)

multiple realisations are used to determine the uncertainty on the
profile
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Conclusion

rotational inversions are feasible in stars other than the Sun

structural inversions remain a challenge

extraction of stellar parameters:

may provide a useful intermediate between scaling laws and inversions
still needs more exploration on large samples of models/stars

non-linear inversions:

can reproduce frequency spectra
models can be somewhat unphysical
additional physics might improve results – room for new physical
behaviours?
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