

Overall PSPM structure

The prime science product of PLATO = sample of fully characterized planets (various masses, sizes, temperatures, and ages)
=> terrestrial planets in the habitable zone of their parent stars.
=> in addition to the photometric transit detections and asteroseismic characterization, a ground-based follow-up support is absolutely required

- Questions addressed
- Needs
- confirmation (false positives)
- planet masses (from RVs)
- tools for optimal planning and operation
- Organization of the Follow-up work
- strategy
- work breakdown and interfaces
- Observing facilities
- yield of the mission and telescope time estimate
- impact of the recent change in the "space-transit" landscape
- available/planned facilities
- Future improvements

- Importance of the follow-up

Goals - Necessity - Organisation
I) Planet parameters

Not obtained from the light curves

- mass, density
- temperature, geometry
- others

2) False positives Experience gained from

- ground-based => giant planets
- space => small planets

3) Optimisation Enhanced science return

- strategy, organisation - synergies
I) False positives: causes of transit signals: giant planets

Grazing eclipsing binaries
Astrometry, RV high-angular [AO] imaging line shape
 optical - physical

Requirements for the organization of the follow-up (1)

Two main aspects of the ground-based follow-up of PLATO reside in i) the basic planet characterization through radial-velocity measurements ii) discarding false positives -> RV \& high angular imaging + photometry

1. Large number of expected transit candidates
=> systematic observation of all transits with large telescopes unfeasible => an optimized follow-up scheme has to be organized
2. Same level of precision cannot be reached for all stars (spectral type, luminosity class, activity, brightness)
3. Same is true for the RVs and high-contrast imaging
4. Strategy for the follow-up: efficient approach

- matching targets and adequate faciities
- freedom of target choice by the observers having needed information in hand
- minimum number of used facilities per target

Requirements for the organization of the follow-up (2)

Targets can move from one box to the next, in an evolutionary way, depending on results of previous observations

In practice => a multi-step approach
from moderate to high-precision instruments

- already successfully used in most of the on-going surveys - will also nicely apply to PLATO candidates.

To achieve this goal we need to design and develop

- efficient tools for the target repartition
- user interface and tools for the observers
- interface between the PDC and the observe
able to accept input from the observer as well (web interface)

PLATO follow-up observations: decision chart
Lightcurve vetting

- period \& depth?
- duration
- shape? ingress-egress time?
- out-of-transit variations?

```
ise positive
- intrinsic variations
- transit by WD
- blends
- triples
- giant planets transits
```


\downarrow OK

\downarrow OK
High-angular resolution image

- eliminate blend scenarios

Photometric follow-up

Expected number of confirmed planets

Assumptions:
each star has one and only one planet in each cell
planet is detected if a transit signal AND a radial velocity signal are measured
intrinsic stellar « noise » is taken into account

PLATO expected numbers of planets

Simulations (y. Alibert et al.)

1) Catalog of stars: actual PLATO field or Besancton model

- Mass, magnitude
- Radius
- Metallicity, activity level
(from distributions in the HARPS GTO volume-limited sample)

2) Transit probability and S / N (transit detection) for all (sep, $\mathrm{M}_{\text {pl }}$) planets

- depends on Rstar and magnitude
- depends on planet mass and semi-major axis

3) Calculate RV effect and probability to confirm the signal

- depends on stellar magnitude and activity level (and vsini)
- depends on planet mass and semi-major axis
- RV precision estimate:
- stellar noise simulations
- observed HARPS precision from early-type and active stars

Radial-velocity precision

+ activity \& granulation effects (Dumusque et al. 2010a, 2010b)

HARPS-N - 15 minutes
Instrument + photon noise

Expected number of confirmed planets
Assumptions:

- each star has one and only one planet in each cell
planet is detected if a transit signal AND a radial velocity signal are measured intrinsic stellar « noise » is taken into account

lower right corner of the (orbit,mass) plane = terrestrial planets in the HZ , not covered by Kepler, will be explored by PLATO thanks to its priority on bright stars

Kepler systems

Same features as RV systems

PLATO expected numbers of planets
$m_{v} \leq 11 \quad$ (with stellar activity)

Rem: \# of planets to follow-up limited to 300 per bin for 4 m telescopes and to 500 for 2 m -class telescopes

Replace ELODIE since Nov 2006 Res $=70^{\prime} 000-\Delta \lambda=380-680 \mathrm{~nm}$

Upgrade of the instrument in 2011 with octagonal fibers
RV precision $\sim 2 \mathrm{~m} / \mathrm{s}$

On-going development of a new calibration unit Upgrade of the Data Reduction
$1.93-\mathrm{m} \mathrm{OHP}$

Radial velocity follow-up - Characterization

- adopt subsidiarity principle: optimized use of 1-2m-, 4m-, $8 m$-class telescopes
$m_{v} \leq 11$ stars, with average level of activity, assuming $15 \mathrm{~min} \times 20$ observ. per planet
-1-2m-class telescopes. $10 \mathrm{~m} / \mathrm{s}$; giant planets on short/medium orbits 1750 stars: ~ 900 nights $=\sim 50$ nights/year x 6 years $\times 3$ telescopes
$-4 m$-class telescopes. $1 \mathrm{~m} / \mathrm{s}$; giant planets on long orbits super-earths on short/medium orbits
1400 stars: ~ 700 nights $=\sim 40$ nights/year $\times 6$ years $\times 3$ telescopes
-8 m -class telescopes. $10 \mathrm{~cm} / \mathrm{s}$; super-earths on long orbits, earths on short/medium orbits, earths on long orbits around brightest stars ($m_{V}<10$)
550 stars : $\mathbf{\sim 2 4 0}$ nights $=\sim 40$ nights/year $\times 6$ years $\times 1$ telescope
- ELT: earths on long orbits around faintest stars ($m_{V} \sim 11$)
- secure dedicated access to $1-2 \mathrm{~m}-\& 4 \mathrm{~m}$-class te via early agreements with ground-based agencie
-groundbased follow-up = world-wide effort
Doable with existing and soon to be available facilities

Efficiency \& bench mark

The first season of the HARPS-N/programs

ESPRESSO on ESO VLT

«Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations»

- Ultra-stable spectrograph for the VLT
- $\mathrm{R}=120^{\prime} 000$
- visible: blue + red arms
- can use any of the UTs (coudé train)
- Consortium : CH, Italy, Portugal, Spain
- FDR in June 2013
- On the sky : 2016

- Precision in RV : $<10 \mathrm{~cm} / \mathrm{s}$
- Goal :Very low-mass planets
- Sample : 50-100 quiet dwarfs (K-M)
- GTO : 200 nights
- Expected: 25-50 planets

Organization of Groundbased follow-up

Radial velocities in the space-transit era

Detecting and characterizing exoplanets \& host stars

