

Questions addressed

- Needs
 - confirmation (false positives)
 - planet masses (from RVs)
 - tools for optimal planning and operation
- Organization of the Follow-up work
 - strategy
 - work breakdown and interfaces

Observing facilities

- yield of the mission and telescope time estimate
- impact of the recent change in the "space-transit" landscape
- available/planned facilities
- Future improvements

PLATO Follow-up activities

Importance of the follow-up

Goals - Necessity - Organisation

I) Planet parameters

Not obtained from the light curves

- mass, density
- temperature, geometry
- others

2) False positives

Experience gained from

- ground-based => giant planets
- space => small planets

3) Optimisation

- Enhanced science return - strategy, organisation
- synergies

I) False positives: causes of transit signals: giant planets **Diagnostics** • Small-size planets => add false-positive due to diluted transits by giant planets on secondaries =>same diagnostics applicable Astrometry, RV high-angular [AO] imaging statistical approach (BLENDER/PASTIS) line shape => Validation Eclipsing binary plus contaminant optical - physical Grazing eclipsing binaries help from Photometric variations -> following talks

Requirements for the organization of the follow-up (1)

Two main aspects of the ground-based follow-up of PLATO reside in i) the basic planet characterization through radial-velocity measurements ii) discarding false positives -> RV & high angular imaging + photometry

1. Large number of expected transit candidates => systematic observation of all transits with large telescopes unfeasible => an optimized follow-up scheme has to be organized

- 2. Same level of precision cannot be reached for all stars (spectral type, luminosity class, activity, brightness)
- 3. Same is true for the RVs and high-contrast imaging
- 4. Strategy for the follow-up: efficient approach
 - matching targets and adequate facilities
 - freedom of target choice by the observers having needed information in hand

Basic idea: i) automatic distribution of the targets in boxes according to the needs ii) given facilities will only have access to some of the boxes matching their capabilities.

Requirements for the organization of the follow-up (2)

Targets can move from one box to the next, in an evolutionary way, depending on results of previous observations

- In practice => a multi-step approach from moderate to high-precision instruments
 - already successfully used in most of the on-going surveys - will also nicely apply to PLATO candidates.

To achieve this goal we need to design and develop

- efficient tools for the target repartition
- user interface and tools for the observers
- interface between the PDC and the observer

able to accept input from the observer as well (web interface)

PLATO expected numbers of planets

Simulations (Y. Alibert et al.)

- 1) Catalog of stars: actual PLATO field or Besançon model
- Mass, magnitude
- Radius
- Metallicity, activity level

(from distributions in the HARPS GTO volume-limited sample)

- 2) Transit probability and S/N (transit detection) for all (sep, M_{pl}) planets
 - depends on R_{star} and magnitude
 - depends on planet mass and semi-major axis

3) Calculate RV effect and probability to confirm the signal

- depends on stellar magnitude and activity level (and vsini)
- depends on planet mass and semi-major axis
- RV precision estimate:
 - stellar noise simulations
 - observed HARPS precision from early-type and active stars

Expected number of confirmed planets

Assumptions:

- each star has one and only one planet in each cell
- planet is detected if a transit signal AND a radial velocity signal are measured
- intrinsic stellar « noise » is taken into account

Kepler, will be explored by PLATO thanks to its priority on bright stars

Radial-velocity precision

	HARPS	5-N - 15 r	minutes	
activity	l day	2 days	5 days	10 days
-5.0	1.07	0.75	0.48	0.35
-4.9	1.18	0.87	0.60	0.40
-4.8	1.25	0.97	0.70	0.45
-4.7	3.0			
-4.6	6.0	$\sqrt{\mathrm{N}_{\mathrm{binning}}}$ decrea		
-4.5	10.0			
-4.4	15.0			
-4.3	20.0]		
-4.2	25.0]		
-4.1	30.0	1		

+ activity & granulation effects

Expected number of confirmed planets

Assumptions:

- each star has one and only one planet in each ce

- planet is detected if a transit signal AND a radial velocity signal are measured

- intrinsic stellar « noise » is taken into account

Kepler, will be explored by PLATO thanks to its priority on bright stars

PHIE with octagonal fibers RV precision ~ 2 m/s

1.93-m OHP

On-going development of a new calibration unit Upgrade of the Data Reduction

-22.56 HD190360c HD7924b -45.205 m.sini = 19 M⊕ m.sini = 9 M⊕ 1.0 m/s RMS 2.0 m/s RMS -22.565 -45.210 ≩ -45.215 ≥ -22.57 -45.220 -22.575

Radial velocity follow-up - Characterization

- adopt subsidiarity principle: optimized use of 1-2m-, 4m-, 8m-class telescopes

 $-m_{\rm v} \leq 11$ stars, with average level of activity, assuming 15 min x 20 observ. per planet

(- 1-2m-class telescopes) 10m/s ; giant planets on short/medium orbits 1750 stars : ~900 nights = ~50 nights/year x 6 years x 3 telescopes

- 4m-class telescopes: 1 m/s; giant planets on long orbits, super-earths on short/medium orbits 1400 stars : ~700 nights = ~40 nights/year x 6 years x 3 telescopes

- 8m-class telescopes) 10cm/s : super-earths on long orbits, earths on short/medium orbits, earths on long orbits around brightest stars ($m_V < 10$) 550 stars : ~240 nights = ~40 nights/year x 6 years x 1 telescope

(- *ELT*:)earths on long orbits around faintest stars ($m_V \sim 11$)

- secure dedicated access to 1-2m- & 4m-class te via early agreements with ground-based agencie

- groundbased follow-up = world-wide effort

Doable with existing and soon to be available facilities

Replace ELODIE since Nov 2006 Res = 70'000 - $\Delta\lambda$ = 380-680 nm

Upgrade of the instrument in 2011

l•l arps-N

ESPRESSO on ESO VLT

«Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations»

• Ultra-stable spectrograph for the VLT •R=120'000

- visible: blue + red arms
- can use any of the UTs (coudé train)
- Consortium : CH, Italy, Portugal, Spain
- FDR in June 2013
- On the sky : 2016
- Precision in RV : < 10 cm/s
- Goal :Very low-mass planets
- Sample : 50-100 quiet dwarfs (K-M)
- GTO : 200 nights
- Expected: 25-50 planets

Radial velocities in the space-transit era

Detecting and characterizing exoplanets & host stars

