

Herschel Science/Instrument Planning and Scheduling

Jon Brumfitt (ESAC) SCIOPS-2013 11 September 2013

European Space Agency

Far infrared & sub-mm Telescope diameter Instruments Launch date End of liquid helium Orbit Downlink Max. slew rate 57-672 μm 3.5 m HIFI, PACS, SPIRE 14-05-2009 29-04-2013 L2 lissajous 1.5 Mb/s 7° /min

Herschel Space Observatory

Complex commanding

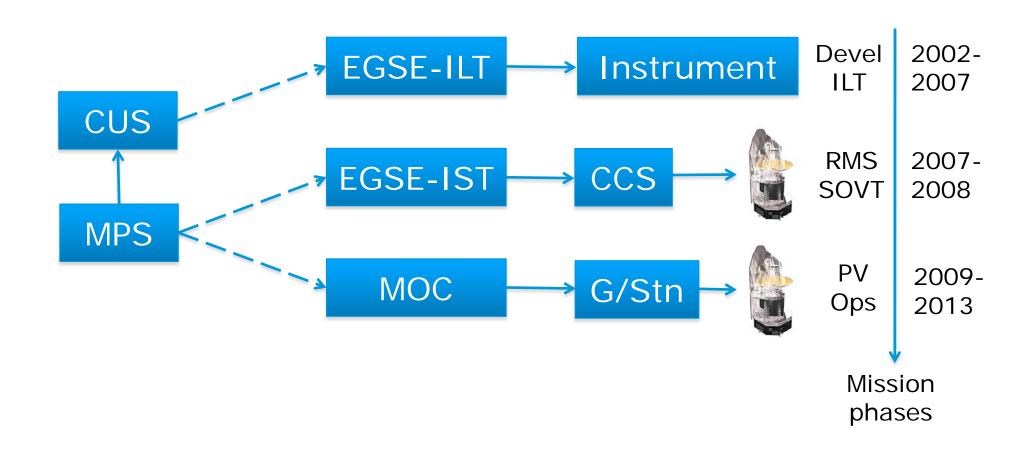
- About 30 science observations/day
- Up to 22000 instr. commands/day (mean 5000)
- Up to 3800 ACMS commands/day (mean 600)
- Complex pointing modes

Operational day

- ~ 24 hours between ground-station passes
- 3 hour communications period (DTCP)
- Autonomous operation

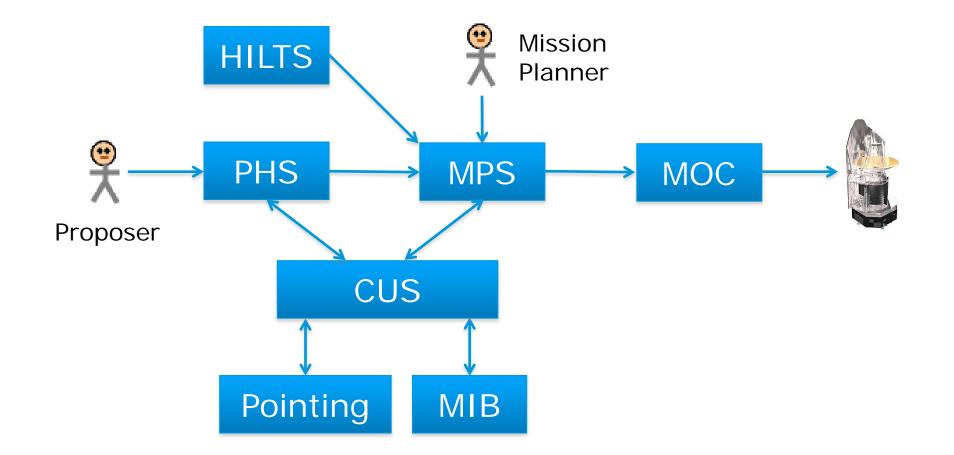
Smooth Transition Concept

Objectives


- Use the same software for all mission phases
- Test the software and instruments together

Benefits

- Early testing of operational software with the real instruments
- Early testing of instruments with the real software
- Robust well-tested system at launch
- Less special instrument test software had to be developed
- Avoided need to build instrument simulators


Smooth Transition

Uplink Chain

Common Uplink System (CUS)

A key component of Herschel instrument commanding

The CUS consists of:

- A special language for instrument commanding
- An engine for generating telecommands
- An IDE for developing and testing CUS scripts

Used for:

- Definition of standard observing modes
- Definition of one-off engineering observations
- Definition of test observations during ILT / IST
- The CUS is a key part of the Herschel *smooth transition* concept

CUS Features

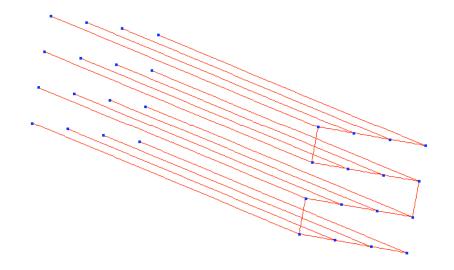
Manages command timing

- Microscheduling of commands within an observation
- Interleaves and synchronizes spacecraft pointing commands
- Models spacecraft bus scheduling

Command generation

- Conversion of command parameters from engineering to raw values
- Pluggable command formatters for ILT, IST, operations, testing
- Building block identifiers link downlink with uplink

Execution modes


- Generate sequence of telecommands
- Calculate duration, noise level, data rate, type, print, #TCs

Pointing Modes

e.g. Nodding raster

- Chop-nod at each raster point
- Calibration hold at fixed pointing after every M points
- Load-slew on every N'th slew
- OFF position, SSO tracking, etc
- Accurately synchronize instrument commanding with spacecraft pointing

Scientific Mission Planning

Herschel Inspector & Long-Term Scheduler (HILTS)

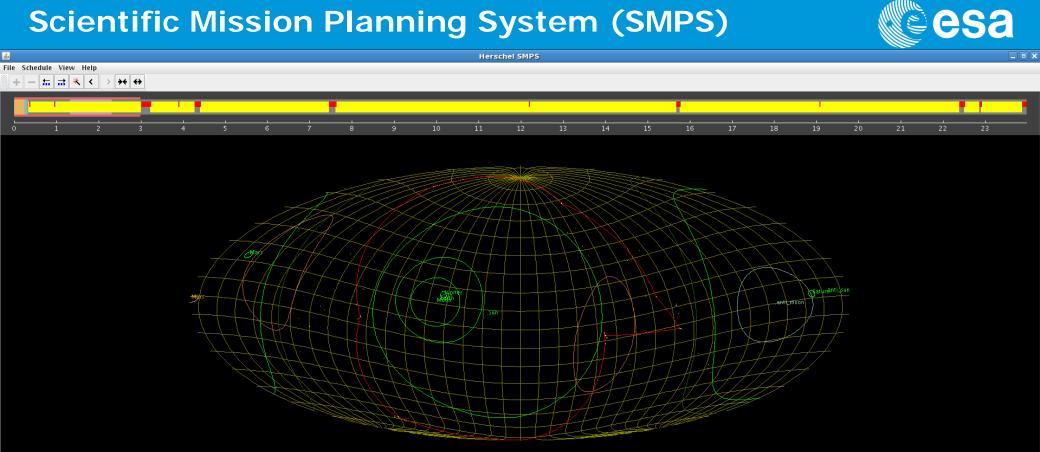
- Plan 14-day cycles
- Identify critical observations

Scientific Mission Planning System (SMPS)

- Schedule each operational day (science, calibration & engineeering)
- Generate telecommand sequences (Instrument & ACMS)
- Used for commissioning, PV, operations & post-He tests (smooth transition)
 - Minimal use of manual commanding

Common framework

Reusable Java libraries

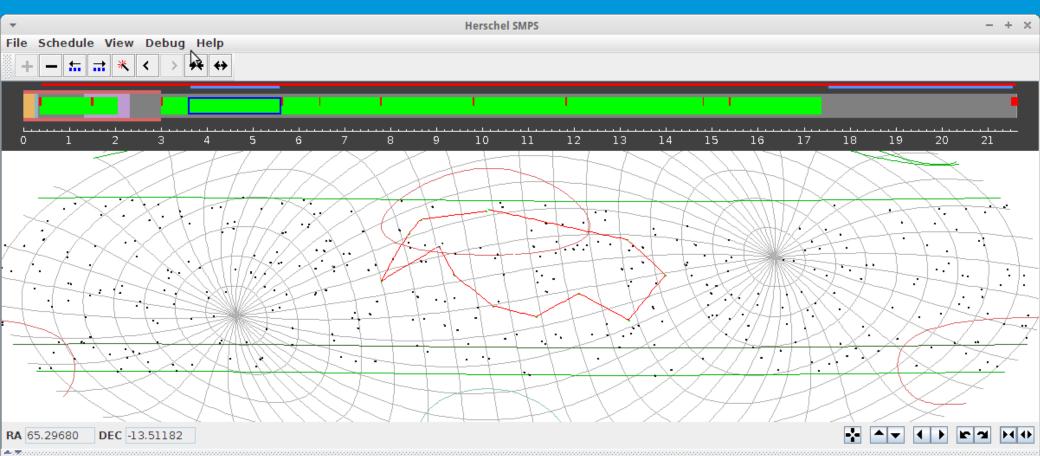


Planning cycles (14 days)

- Days allocated to specific instruments
 - Cooler recycling takes 3 hours, 48-hour hold time
- One instrument at a time: SPIRE+PACS as a "Parallel" instrument
- PACS PHOT & SPEC, SPIRE PHOT & SPEC, Parallel, 14 HIFI bands

Factors

- HIFI band switching takes 10-60 minutes to stabilize
 - Trade-off against slew-time
- Some SSOs required special OD assignments


RA 47.42607 DEC 62.46380

Requests	Schedule	Problems	Filter	Messages										
lo	1	Title			Inst	Slew	Start	Duration	Stop	NAIFID	RA	DEC	MC	
2247668	Sp	SpireEngCheckPMGen-0232			S_ENG	(2012-04-07T21:26:13Z	45	2012-04-07T21:26:58Z				MC_H98ASTR_P69ASTR_S66ASTR_RP	
2718035	Н	HifiEngOBS_SEU_check_DTCP - 0400			H_ENG	(2012-04-07T21:27:02Z	26	2012-04-07T21:27:28Z				MC_H100ASTR_P69ASTR_S66ASTR_RP	
2458481	6	637_584_52174 - PSpec [CII]				P_SPEC	123	2012-04-07T21:29:35Z	1988	2012-04-07T22:02:43Z		316.2861	-5.3998	MC_H98ASTR_P69ASTR_S66ASTR_RP
2115278	PS	pecR-0000				P_SPEC	138	3 2012-04-07T22:05:05Z	7205	2012-04-08T00:05:10Z		316.0451	-11.3634	MC_H100ASTR_P69ASTR_S66ASTR_RP
1166558	D	issIToDissII_6a	a – 003			H_ENG	(2012-04-08T00:05:14Z	29	2012-04-08T00:05:43Z				MC_H100ASTR_P69ASTR_S66ASTR_RP
2443399	s)52212_p1				P_SPEC	878	3 2012-04-08T00:21:55Z	2244	2012-04-08T00:59:19Z		80.5525	-67.9757	MC_H100ASTR_P69ASTR_S66ASTR_RP
2443401	s)52212_p2				P_SPEC	126	52012-04-08T01:01:29Z	1254	2012-04-08T01:22:23Z		80.5525	-67.9757	MC_H100ASTR_P69ASTR_S66ASTR_RP
1956246	PS	SpecR−KHK−P≠	4H-Rangel	2-0riA-145-p1		P_SPEC						83.8472	-5.4695	
1956247		PSpecR-KHK-PAH-Range2-OriA-145-OFFPOS 1-p1				60	062012-04-08T01:32:33Z	10813	2012-04-08T04:32:46Z		83.0781	-6.4076	MC_H100ASTR_P69ASTR_S66ASTR_RP	
1956249	PS	SpecR–KHK–P#	4H-Range	2-0riA-145-p2								83.8472	-5.4695	
2193169	0	7598 - A				P_SPEC	728	3 2012-04-08T04:44:58Z	16361	2012-04-08T09:17:39Z		121.1378	64.9968	MC_H98ASTR_P69ASTR_S66ASTR_RP
2193170	0	7598 - B				P_SPEC	124	2012-04-08T09:19:47Z	12419	2012-04-08T12:46:46Z		121.1378	64.9968	MC_H98ASTR_P69ASTR_S66ASTR_RP
1756543	PA	ACS – L 1157 I	C			P_SPEC	478	3 2012-04-08T12:54:48Z	11753	2012-04-08T16:10:41Z		309.7758	68.0394	MC_H100ASTR_P69ASTR_S66ASTR_RP
1756548	P	ACS - L 1157	N			P_SPEC	123	2012-04-08T16:12:48Z	11753	2012-04-08T19:28:41Z		309.7388	68.0690	MC_H100ASTR_P69ASTR_S66ASTR_RP
2449468	R.	AqI_B2A				P_SPEC	603	2012-04-08T19:38:48Z	1130	2012-04-08T19:57:38Z		286.5927	8.2300	MC_H98ASTR_P69ASTR_S66ASTR_RP
1765934	Pa	acsSedB2A – №	1GE_3834			P_SPEC	268	3 2012-04-08T20:02:10Z	3347	2012-04-08T20:57:57Z		277.1390	-11.7788	MC_H98ASTR_P69ASTR_S66ASTR_RP
Slew							403	2012-04-08T21:04:42Z	0	2012-04-08T21:04:42Z		315.9993	-7.1258	

OD: 1060 Remaining Time: 64 secs. Slew Time: 4598 secs.

R	equests	sts Schedule Problems		Filter	Messages											
	HL Id	Tit	Title		Duration	Prio	Pointing	Rank	RA 🛆	DEC	Mode	NAIFID	Proposal	Const		
	791	obs_91			4594	1	Raster	10	309.6424	58.0861	PacsRasterDemo		proposal_4			
	306	obs_6	6		3794	1	Nodding-raster	10	309.9659	-6.3304	PacsNoddingRasterDemo		proposal_2			
	578	obs_78	78		2789	1	Cross_scan	10	309.9971	-26.0973	PacsCrossScanDemo		proposal_2			
	19	obs_19		P_SPEC	7026	1	Nodding-of-raster	10	311.1711	51.2712	PacsNoddingOfRasterDemo		proposal_1			
	453	obs_53		P_PHOT	1840	1	Basic-fine	10	312.8635	11.2560	PacsBasicFinePointingDemo		proposal_1			
	544	obs_44		P_SPEC	2789	1	Cross_scan	10	312.9238	-43.3564	PacsCrossScanDemo		proposal_2			-
	59	obs_59		P_SPEC	7026	1	Nodding-of-raster	10	313.3810	-19.3629	PacsNoddingOfRasterDemo		proposal_1			,
4																

OD: 703 Remaining Time: 14868 secs. Slew Time: 3012 secs.

Interactive scheduler

- Emphasises good visualisation (linked spatial, temporal & list views)
- Simulated Annealing optimizer (but manual in practice)
- Enforces standard constraints during scheduling
- Validation integrated into scheduler

Basic constraints

- Attitude: Sun, Earth, Moon, bright planets
 - -boresight, solar panel, star tracker, antenna
 - orientation (roll) -> time windows
- Temporal: visibility, fixed-time, concatenations, etc

Special constraints

- Instrument interactions: HIFI not for 12 hours after SPIRE
- Thermal effects at high Solar Aspect Angles
- Special concatenations, follow-on
- Override bright-planet constraint
- Stray light

Flexibility

- Spacecraft operations are complex
- Must be able to cope with non-nominal situations
 - -instrument anomalies (e.g. SEUs)
 - spacecraft anomalies (e.g. star-tracking problem early in mission)
 - -late TOOs
 - -etc (ground-station test, leap-second, ...)
 - Observations with special constraints (e.g. SSOs)
- Software evolution in response to new requirements (e.g: stray light)

Solar System Objects

- Changing ephemerides required late replans (e.g. comets 45P & 103P)
- Special OD assignments in planning cycle
- Sometimes exceeded maximum tracking rate (10" / min)
- Observation time chosen for low background

Summary

One system for all mission phases

- CUS for instrument development, test & operations
- MPS for SOVT, commissioning, PV, operations & post-He tests

One system for all instruments

CUS is a Common Uplink System

Flexibility to cope with non-nominal situations

- CUS allows one-off observing modes for on-ground or in-flight tests
- Special mission planning constraints
- Recovery from problems (e.g. SEUs)