Selecting and scheduling observing programmes at ESO

- A (brief) history of time allocation
- Proposal review & selection
- Preparation of the Schedule
- Talking points

Proposal submission: A history

Programme Types

Single Semester

- •Normal Programmes: < 100h
- •Target of Opportunity: <5%, incl. RRM
- Guaranteed Time Observations
- Calibration

Multiple Semester

- Monitoring Programmes: <100h,span 4 periods (Paranal & APEX)
- Large Programmes: >100h,4/8 periods (Paranal & APEX/La Silla)
- •XMM/VLT Programmes: 2 periods
- •Director's discretionary time: <5%

Proposal Submission

Observing Programmes Committee (OPC)

OPC & Panels:

- 78 OPC and panel members + OPC Chair
- Distributed in 13 panels by scientific expertise

The OPC's function is to

- Review, evaluate proposals on scientific merit
- Rank all proposals
- Advise the Director General

OPC Meeting

Pre-OPC Meeting

- Pre-OPC grades: 1.0/5.0 (outstanding/rejected)
- Triage applied at 70% before meeting

During OPC meeting

- During meeting all proposals are graded and ranked in individual panels except for Large and Calibration
- Large and Calibration proposals voted on by all OPC members

The final ranked list is used to guide the scheduling process.

TaToo

J. Alves 2005, The ESO Messenger 119, 20

Scheduling task	Time to completion
Post OPC prep work	5
VLT Interferometry	5
TaToo configuration	1
Unit Telescopes	3+1
La Silla Scheduling	2
VISTA, VST, APEX	2
Scheduling report	1
Schedule optimization	1
Fillers	1
Prepare schedule exports	1
Technical feasibility report prep	1
Webletters preparation	1
Total time	25

Scheduling task	Time to completion
Post OPC prep work	5

- Ingest runs into scheduling database
- Reject poorly ranked normal and special proposals
- Consistency checks
- Check ongoing Large Programmes
- Calculate Large Programme commitment
- Chilean time 10% of time on all telescopes
- ToO commitment
- Scheduling modifications recommended by OPC

Prepare schedule exports	1
Technical feasibility report prep	1
Webletters preparation	1
Total time	25

Scheduling task	Time to completion
Post OPC prep work	5
VLT Interferometry	5

- Identify visitor instrument runs
- Time constrained observations
- Demands in RA bins against baselines
- Technical feasibility checks

Scheduling report	1
Schedule optimization	1
Fillers	1
Prepare schedule exports	1
Technical feasibility report prep	1
Webletters preparation	1
Total time	25

Scheduling task	Time to completion
Post OPC prep work	5
VLT Interferometry	5
TaToo configuration	1
Unit Telescopes	3+1

- UT4: laser guide star demand & slots
- All UTs: Creation of fake carryover runs
- Time constrained runs
- All Visitor Mode runs are scheduled manually

Fillers	1
Prepare schedule exports	1
Technical feasibility report prep	1
Webletters preparation	1
Total time	25

Scheduling task	Time to completion
Post OPC prep work	5
VLT Interferometry	5
TaToo configuration	1
Unit Telescopes	3+1
La Silla Scheduling	2
VISTA, VST, APEX	2
Scheduling report	1
Schedule optimization	1
Fillers	1

- Selection of fillers
- Check technical feasibility
- Conversion of VM fillers to SM

Total time 25

ESO European Organisation for Astronomical Research in the Southern Hemisphere

TaToo: Timeline view

Summary & Talking points

- Current system allows for a variety of programme types, instrument configurations, and observing modes
- Long-term schedule: static 6-month schedule
 - not designed to be updated within this period
- Room for optimisation including:
 - Time constraints
 - Incorporate more flexibility in system
 - Anticipate new programme types (e.g., enhanced fast response channel and "fillers")
 - Include DDTs, VLTI, long running programmes

Further reading...

Organizations, People and Strategies in Astronomy 2 (OPSA 2), 231-256 Ed. A. Heck, © 2013 Venngeist.

SELECTING AND SCHEDULING OBSERVING PROGRAMMES AT ESO

FERDINANDO PATAT AND GAITEE A.J. HUSSAIN
Observing Programmes Office
European Southern Observatory
Karl-Schwarzschild-Straße 2
D-85748 Garching, Germany
fpatat@eso.org
ghussain@eso.org

Abstract. The European Southern Observatory (ESO) manages the largest astronomical ground-based optical and near-IR facility on the planet. It typically receives one thousand applications per semester, and it serves about one third of the astronomical community world-wide. In this paper we review the procedures currently in place at ESO for proposal selection and telescope time allocation.

