Design exercise: the EUI Data Centre at the Royal Observatory of Belgium

Cis Verbeeck, David Berghmans, Samuel Gissot, Koen Stegen, Bogdan Nicula (ROB) SCIOPS 2013, ESAC, **September 13, 2013** pmod wrc

Presentation Summary

- The variable Sun
- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

The variable Sun

The variable Sun

- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

The variable Sun

- Solar cycle of 11 years: max in 2012-2013, near min in 2020
- **Solar** (differential) **rotation** ~ 27 days
- Variability of solar features in a matter of hours and days

SILSO graphics (http://sidc.be) Royal Observatory of Belgium 01/09/2013

Solar Orbiter mission

The variable Sun

- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

What is required

- Close to the Sun
- Out of the ecliptic

- Remote measurements of the Sun and corona
- In situ measurements of fields and particles
- It is this unique combination provided by Solar Orbiter that makes it possible to address the question of how the Sun creates and controls the heliosphere

http://www.solarorbiter.org/

Solar Orbiter

Carefully optimised payload of ten remote sensing and in situ instruments Launch: January 2017 Cruise Phase: 3 years Nominal Mission: 3.5 years **Extended Mission: 2.5 years Perihelion: 0.28 – 0.3 AU Fast perihelion motion: solar features** visible for almost complete rotation Out of ecliptic: first good view of solar poles

High-latitude remote sensing

Perihelion remote sensing

High-latitude remote sensing

Science windows

- Orbit: 150-168 days
- In situ instruments on at all times
- Three science "windows" of 10 days each
- All remote sensing instruments operational
- Observing strategies based on science targets
 - Active regions, coronal hole boundaries, flares, high speed wind, polar structures
 - Autonomous burst mode triggers for unpredictable events
 - Telemetry and mass memory tailored to return planned instrument data volumes

Solar Orbiter mission profile

EUI onboard Solar Orbiter

- The variable Sun
- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

EUI (Extreme Ultraviolet Imagers) onboard Solar Orbiter

Channel	Parameter	Values
	Dimensions - Optical bench - Electronic box Mass (incl. margins) Nominal power Telemetry	- 550x175x785mm - 120x300x250mm 18.20 kg 28 W 20 kb/s
FSI dual EUV	Wavebands Field of View Resolution (2 px) Cadence	174 Å et 304 Å 5.2 arcdeg × 5.2 arcdeg 9 arcsec 600 s
HRI	Wavebands Field of View Resolution (2 px) Cadence	174 Å 1000 arc sec square 1 arcsec 2 s
HRI Lyman-α	Wavebands Field of View Resolution (2 px) Cadence	1216 Å 1000 arcsec square 1 arcsec < 1s

http://eui.sidc.be/

The EUI Data Centre (EDC)

- The variable Sun
- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

Solar Orbiter

Science Ground Segment

Challenges for EDC

- The variable Sun
- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

Challenges for EDC

Challenges of science operations (deep space mission):

- Lack of real-time contact
- Lack of telemetry: 19 orbits over 7 yrs (extended mission)
 ~ 120 GB ~ 340 000 images (20x compression)

Operations ideas under study:

- Improved planning
- Data selection by onboard intelligence
- Data selection a posteriori from the ground

Challenge for EDC: Compression

Challenge for EDC: Selecting targets

- Lack of real-time contact
- Solution: perform precursor observations before start of most remote-sensing windows to enable SOC to choose a fine-pointing profile for the spacecraft that is commensurate with the science goals defined by the SWT for a particular orbit.
- Downlink low latency data during the next ground station pass to make a quick assessment of promising offpointing targets.

Left: FOV (1000" x 1000") of EUI's high-resolution imager HRI at perihelion (0.28 AU). This corresponds to a square of about $(200 \text{ Mm})^2$ of solar surface at disk center, i.e., less than 3% of the solar disk. *Right*: same area on SDO/AIA image.

Challenge for EDC: Observing flares

Slim prospects for observing solar eruptions

• HRI covers 1/40th of the solar disk

 telemetry limit: only 2 hours of high cadence per orbit (duty cycle = 1/720)

• over 30 days we expect 10 eruptions

operations: random pointing random time frame

the probability per orbit to observe an eruption = ~ 10/ (720.*40) ~ 1 / 3000

Challenge for EDC: Observing flares

- Solution: dedicated flare trigger for EUI
- Human decision based on flare trigger

 during 7 March 2011. Parameters (a) to (e) are explained in Table 2.

 Event nr.
 (a) Start
 (b) End
 (c) Location
 (d) Size
 (e) Significance

Table 3. SWAP flare detection characteristics for one particular event that occurred

GOES: M3.7 20:01

50%

3

FITS generating pipeline

- The variable Sun
- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

FITS generating pipeline

Conclusions

- The variable Sun
- Solar Orbiter mission
- EUI onboard Solar Orbiter
- The EUI Data Centre (EDC)
- Challenges for EDC
- FITS generating pipeline
- Conclusions

Conclusions

- C Launch: January 2017
- O Cruise Phase: 2017-2020
- Nominal Mission: 2020-2024
- Extended Mission: 2024-2026

EUI instrument onboard Solar Orbiter

- High res EUV images of solar features
- Linking solar & heliospheric phenomena
- Better view on solar poles
- EUI Data Centre at ROB
 - O EDC requirements: 2013
 - O Start EDC development: 2014

Extra slides

Why study the Sun-space connection?

- Addresses ESA's Cosmic Vision question "How does the solar system work?"
- Study plasma phenomena which occur throughout the Universe
 - Shocks, particle acceleration, magnetic reconnection, turbulence, etc.
 - Also addresses Cosmic Vision question "What are the fundamental physical laws of the Universe?"
- Solar wind and energetic particles directly affect life on Earth
 - Impact on space and ground-based assets
- Builds on European heritage: Ulysses and SoHO

Mission profile

IN SITU	l Instruments		
SWA	Solar wind analyser	Chris Owen, UK	Sampling protons, electrons and heavy ions in the solar wind
EPD	Energetic particle detector	Javier Rodriguez- Pacheco, Spain	Measuring timing and distribution functions of accelerated energetic particles
MAG	Magnetometer	Tim Horbury, UK	High-precision measurements of the heliospheric magnetic field
RPW	Radio and plasma wave analyser	Milan Maksimovic, France	Studying local electromagnetic and electrostatic waves and solar radio bursts
Remo	ote sensing instrume	ents	
PHI	Polarimetric and heliospheric imager	Sami Solanki, Germany	Full-disc and high-resolution visible light imaging of the Sun
EUI	Extreme ultraviolet imager	Pierre Rochus, Belgium	Studying fine-scale processes and large- scale eruptions
STIX	Spectrometer/telescope for imaging X-rays	Arnold Benz, Switzerland	Studying hot plasmas and accelerated electrons
METIS	Multi-element telescope for imaging and spectroscopy	Ester Antonucci, Italy	High-resolution UV and extreme UV coronagraphy
SoloHI	Solar Orbiter heliospheric imager	Russ Howard, US	Observing light scattered by the solar wind over a wide field of view
SPICE	Spectral imaging of the coronal environment	Facility instrument, ESA provided	Spectroscopy on the solar disc and corona

Design overview (1/30)

Design overview (2/30)

Heritage

- PROBA2-SWAP \rightarrow HRI optical design, detector & filters
- HERSCHEL Rocket \rightarrow FSI optical design
- SOHO-EIT, STEREO-EUVI \rightarrow EUV multilayers mirror coatings
- Passive thermo-mechanical design
 - No active control, passive detector cooling
 - Low CTE optical bench
 - Heat rejection entrance baffles
- Compact
 - Small entrance apertures
 - Three channels on a single optical bench
 - Decoupling of optical and electrical units
- Low telemetry
 - Compression and on-board data processing/selection

EUI: Extreme Ultraviolet Imagers

EUI: Extreme Ultraviolet Imagers

Scientific performances (2/3)

FSI photometry

Scientific performances (2/3)

EUI observing programs

Science program	Science Data Reqt	Channel	Cadence (sec)	Compress ion	TM (Gbits / h)
(S) Synoptic	4 x 4 R _{sun} window centered on disc centre	FSI ₁₇₄ FSI ₃₀₄	600	50	0.0075
(R) Reference Synoptic	4 x 4 R _{sun} window centered on disc centre	FSI ₁₇₄ FSI ₃₀₄	1day	4	0.0025
(G) Global eruptive event	Full FOV centered on event.	FSI ₁₇₄ or FSI ₃₀₄	10	10	4.43
(C) Coronal Hole	Full FOV centered on CH with its boundary and/or plumes. High latitude, perihelion, possibly near co-rotation.	HRI ₁₇₄ HRI _{Lyα}	30 30	5 15	1.75
(Q) Quiet Sun	Full FOV centered on QS. Perihelion/encounter, near co-rotation	HRI ₁₇₄ HRI _{Lyα}	8 1	7 15	16.6
(A) Active region	Full FOV centered on AR. Perihelion/encounter, near co-rotation	HRI ₁₇₄ HRI _{Lyα}	2 1	15 15	19.7
Eruptive event (E)	Perihelion/encounter, near co-rotation Full FOV	HRI ₁₇₄ HRI _{Lya}	1 1	15 15	26.1
Discovery (D)	High cadence dynamics Perihelion/encounter, near co-rotation, 645 x 645 FOV for Lya	HRI ₁₇₄ HRI _{Lyα}	1 0.1	15 15	26.1

Scientific objectives (2/4)

Selected open question:

YB O2.1. How and where do the solar wind plasma and magnetic field originate in the corona?

- The fine structuring of the corona is the key for understanding the fundamental dissipation processes at play
 - Minimal observed width of loops (~900 km) equal to resolution of instruments Aschwanden 2005, ApJ
 - Fine thermal structure at the limit of Hinode resolution: 1000 km

Reale, Parenti et al. 2007, Science

EUI flexibility and constraints

Telemetry for the orbit : 49.4 Gb

Science target: dynamics/discovery

Channel	FOV	Cad. (s)	Exp. (s)	Compres sion	Duration (min)	Telemetry (Gbits)	Total TM
F174	4x4R _s	600	10	50		0.0025	
F304	4x4R _s	600	10	50		0.0025	00,0007
H174	Full	10	3	15		0.2188	22.0987
HLya	645 ²	0.1	0.1	15		21.8750	

Science target: plumes tomography

F174	4x4R _s	28800	100	4	6.4600	
F304	4x4R _s	28800	100	4	6.4600	18 6621
H174	Full	28800	100	4	2.8711	10.0021
HLya	Full	28800	10	4	2.8711	

Challenge for EDC: data prioritization 🌍 💞

- Since only a fraction of the acquired images can be sent to the ground, proper prioritization of images is essential.
- **Solution**: Six packet stores based on campaign type and image quality.

Solar Orbiter spacecraft

- Three-axis stabilised, Sun pointing
- Heatshield at front
- Re-use of BepiColombo unit designs as practical
- Mass: 1750kg
- Power: 1100W
- Launch: ELV

EUI Full Sun Imager (FSI)

SOHE 2013, Catania, 4 - 6 September

Fe IX/X 174

H Ly α

1 pixel: ~100 km @ 0.3AU

SPICE FOV: 16' x 13'

SOHE 2013, Catania, 4 - 6 September

Four basic science questions

1) How and where do the solar wind plasma and magnetic field originate in the corona?

2) How do solar transients drive heliospheric variability?

3) How do solar eruptions produce energetic particle radiation?

4) How does the solar dynamo work?

BRIGHT LOOP REAMER/CORO

CAVITY (MAGNETI

EUI Consortium

- FSI lead, filter wheels, optics and mounts
- INSTITUT d'OPTIQUE GRADUATE SCHOOL
 - Optics and coatings
- Common electronic box, on-board software, EGSE
- MPS
- HRI_{LV- α} lead, contamination control plan, ground calibr.

pmod wrc • Optical bench, structural elements...

EUI contribution to science question 1

1) How and where do the solar wind plasma and magnetic field originate in the corona?

- Connect the chromosphere, corona and inner heliosphere:
 - Structure and dynamics of network cells, possible sources of fast wind. Tu et al. (2005)
- Determine the global structure of polar coronal holes (e. g. plumes)
 Barbey et al. 2008, Gabriel et al. 2005

"How do solar transients drive heliospheric variability?"

"How do solar eruptions produce energetic particle radiation that fills the heliosphere?"

Remote instruments should be able to return observations of the source regions of eruptions that have an effect measured by the in-situ instruments.

Challenge for EDC: Limited telemetry

- Telemetry limited to 20 kbps, 30 days per orbit
- 19 orbits over 7 yrs (extended mission) ~ 120 GB ~ 340 000 images (20x compression)
- Adaptive data transfer
 - 5% of TM for calibration images
 - 5% of TM allocation for thumbnails
 - Part of TM used if ground contact
 - Data dump at end of science window

#	Date	Document	Risk
D4.1	2014 Q1	EDC Requirements & Specifications Document	No significant risk
D4.2	2014 Q3	EDC Design document	Timely availability of SO ground segment Baseline Design doc.
D4.3	2016 Q1	Functional version of EDC software (SVT time)	Timely availability of ICDs (interface documents)
D4.4	2016 Q4	Online user manual	No significant risk

Level 0b telemetry files as we get them from MOC

RMTR: EUI reformatter: depacketizer, decompression

Level 1b uncalibrated, raw FITS. Containing only information coming from Level 0b files. Suitable for EUI quicklook viewer. Pipeline for Science Data Products Generation

Pipeline for Science Level 0b telemetry files as we get them from MOC RMTR: EUI reformatter: depacketizer, decompression Level 1b uncalibrated, raw FITS. Containing only information coming from Level 0b files. Suitable for Data EUI quicklook viewer. Products EDG: EUI engineering data generator: combination with all relevant metadata (from auxiliary data archive, pointing, attitude, etc) Generation Level X uncalibrated, raw FITS containing all metadata. Base data product.

The EUI Data Centre (EDC)

