Ground testing of the PHI Image Stabilisation System (ISS) for Solar Orbiter

Abstract
The Photospheric and Helioseismic Imager (PHI) on board of the ESA mission Solar Orbiter, to be launched in 2017, will provide measurements with high polarimetric accuracy of the photospheric solar magnetic field at high solar latitudes. The required pointing precision is achieved by an image stabilisation system (ISS) that compensates for spacecraft jitter. The ISS consists of a high-speed correlation tracker camera (CTC) and a fast steerable tip-tilt mirror operated in closed loop. This poster will present the test setup being used to demonstrate that the performance of the ISS is according to the requirements, and the results of these tests. A detailed description of the PHI ISS is given on poster 27 „Image stabilisation system of the Photospheric and Helioseismic Imager“ by Volkmer et al.

ISS Test Setup
The PHI ISS test setup has the same tip-tilt-scale as the telescope on board of Solar Orbiter (7.6 µrad / pixel) and consists of the following optical components:
- Light source (LED emitting at 617 nm)
- Optical fiber to simulate solar granulation
- Collimator and re-imager lenses (f = 1000 mm)
- M1 disturbance TT-mirror (positioned close to pupil)
- M2 stabilisation TT-mirror (positioned in pupil)
- M3 mirror
- Beam splitter
- CT-Camera
- USB camera (providing “science” images for analysis of the pointing stability at up to 50 fps)

To derive the PID-parameters for the ISS control servo, the Cohen-Coon tuning method has been applied. The latency between input (via M1) and output signal was measured as well as the rise time of the step response.

The achieved performance exceeds the required specification.

ISS Test Results

CT-Camera
Specifications:
- 0.8 arcsec / pixel resolution
- 12 bit ADC (10 bits being used)
- ~500 DN nominal signal level
- ~85 DN bias, dark current negligible
- Noise: 0.5 DN std dev (at 20-65°C)
- 8 effective bits

The camera has been successfully tested in correlation mode at a frame-rate of 400 fps with 128x128 images and at 800 fps with 64x64 images.

TT-Controller
Specifications:
- 12 bit D/A converter
- Output voltage: 0 - 55 V
- Frequency range: 0 Hz - 1 kHz
- Noise: ~10 mV (< 1 DN)

For frequencies < 100 Hz the delay time of the TT-Controller is < 0.1 ms.

TT-Drive
Specifications:
- 1.5 µF per piezo stack
- ±270 µrad (±28 arcsec on sky) tilt angle
- Lowest TT-Drive resonance at 1.3 kHz
- Lowest M2 mirror cell resonance at 1 kHz

During a vibration test at qualification level, the maximal piezo induced voltages were < 15 V.
- No harm to TT-Controller electronics.

To implement PID-parameters for ISS control the Cohen-Coon tuning method has been applied. The latency between input (via M1) and output signal was measured as well as the rise time of the step response.

The achieved performance exceeds the required specification.

ISS Test Setup

Figure 1: ISS test setup in optical lab
Figure 3: CT-Camera image showing simulated granulation (128x128 pixel)
Figure 5: TT-Drive with M2 mounted on shaker
Figure 7: Piezo induced voltages during vibration test
Figure 9: Vertical sinusoidal disturbance introduced by M1
Figure 11: Attenuation at different frame-rates

ISS Test Results

Figure 2: Schematic ISS test setup
Figure 4: TT-Controller transfer function
Figure 6: Acceleration during vibration test
Figure 8: ISS step response in open loop
Figure 10: Residual jitter with ISS on
Figure 12: Noise in idle and correlation mode

Implementation of PID servos in ISS control:
\[y = x \cdot H(z) = \frac{b_0 + b_2 z^{-2}}{a_0 + a_2 z^{-2}} \]
with
\[a = \{1, -2, 1\} \]
\[b = \{1.5, -0.75, 0\} \]

The achieved performance exceeds the required attenuation.

Noise
The noise (vibrations on optical bench and electronic noise seen by the TT-Drive) is ~0.002 arcsec std dev in idle mode. It increases to ~0.007 arcsec std dev in correlation mode which corresponds to only ±1 DN peak-peak being added by the correlation algorithm.
This is far better than the required pointing stability of 0.1 arcsec.

Gain
The achieved performance exceeds the required attenuation.

Figure 1: ISS test setup in optical lab
Figure 3: CT-Camera image showing simulated granulation (128x128 pixel)
Figure 4: TT-Controller transfer function
Figure 5: TT-Drive with M2 mounted on shaker
Figure 7: Piezo induced voltages during vibration test

Figure 2: Schematic ISS test setup
Figure 6: Acceleration during vibration test
Figure 8: ISS step response in open loop
Figure 9: Vertical sinusoidal disturbance introduced by M1
Figure 10: Residual jitter with ISS on
Figure 11: Attenuation at different frame-rates

CT-Camera

Figure 1: ISS test setup in optical lab

TT-Controller

Figure 4: TT-Controller transfer function

TT-Drive

Figure 5: TT-Drive with M2 mounted on shaker

CT-Camera

Specifications:
- 0.8 arcsec / pixel resolution
- 12 bit ADC (10 bits being used)
- ~500 DN nominal signal level
- ~85 DN bias, dark current negligible
- Noise: 0.5 DN std dev (at 20-65°C)
- 8 effective bits

The camera has been successfully tested in correlation mode at a frame-rate of 400 fps with 128x128 images and at 800 fps with 64x64 images.

TT-Controller

Specifications:
- 12 bit D/A converter
- Output voltage: 0 - 55 V
- Frequency range: 0 Hz - 1 kHz
- Noise: ~10 mV (< 1 DN)

For frequencies < 100 Hz the delay time of the TT-Controller is < 0.1 ms.

TT-Drive

Specifications:
- 1.5 µF per piezo stack
- ±270 µrad (±28 arcsec on sky) tilt angle
- Lowest TT-Drive resonance at 1.3 kHz
- Lowest M2 mirror cell resonance at 1 kHz

During a vibration test at qualification level, the maximal piezo induced voltages were < 15 V.
- No harm to TT-Controller electronics.

To implement PID-parameters for ISS control the Cohen-Coon tuning method has been applied. The latency between input (via M1) and output signal was measured as well as the rise time of the step response.

The achieved performance exceeds the required specification.