

Observing Very Bright Stars with Gaia

J. Martin-Fleitas, A. Mora, J. Sahlmann & R. Kohley. 6th- Inter-Departmental Science Workshop Aranjuez, 2013/11/19-21

Photo: ESA

Observing Very Bright Stars with Gaia SUMMARY

SUMMARY Gaia Detection/Observation System Observing Very Bright Stars with Gaia

Gaia Presentation (T. Prusti) > 6th IDSW Session 3, 20th Nov, 9:30 am

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag

Observing Very Bright Stars with Gaia Gaia Observation System

- 1 x 0.5 m in size
- 20 kg, all Silicon Carbite (SiC)
- Excellent thermal and mechanical stability
- 106 CCDs mounted on CSS aligned in 7 rows and 17 functional strips.
- 0.28 m² of Silicon
- WFS opto-mechanical assemblies directly mounted on the CSS in front of WFS CCDs.

1 billon pixels => Huge amount of TM.
 on-board selection of objects.
 Spinning mission => CCDs in TDI mode.

esa

Observing Very Bright Stars with Gaia Detection & Observation

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag.

gaia

Credit: Figure courtesy EADS-Astrium & B. Holl. Animation idea: B. Holl

- ➢ Gaia Magnitude Range ⇒ 5.7 ≤ G ≤ 20.
- > Bright Stars \implies 5.7 \leq G \leq 13.
- Gaia will observe billions of stars but not the ones visible with naked eye.
- The SOC studied the issue:
 - > What is the science case for observing very bright stars?
 - > What is actually the limitation?
 - > No scientific requirement exists.
 - Development-phase design led to this limitation.

Observing Very Bright Stars with Gaia Science opportunity

5300 Hipparcos stars have G < 5.7

1.Accurate masses of known exoplanets \Rightarrow 20 - 60 planet masses

2.New exoplanets around very bright stars \Rightarrow dozens of new giant planets (e.g. around A/F type stars)

3.Parallaxes and proper motions of the 5300 brightest stars gain >one order of magnitude in precision (unique Gaia legacy)

Distance (pc)

"Very" Bright Stars

VPU parameters Optimisation

- SOC Simulator
 - VPU Prototype (from Astrium)
 - >Image generator:
 - ➤ Gaussian PSF
 - Photon Shot noise
 - ≻ Telescope & CCDs QE
 - Output: tool to show the results
- 5 VPU Parameters:
- EXT_WH: max. distance btwn extremities
- DELTA_MAG: max. difference in mag.
- EXT_IN_BUFFER: max. nb of extremities.
- MAG_AL_LUT: extremity AL magnitude.
- > MAG_AC_LUT: extremity AC magnitude.

	SOC	ASTRIUM
Ref. doc.	(JMF-005)	(PLM-00884)
VPU SW	version 2.5	version 2.6
Simulations	Gausian PSF Photon Shot noise Telescope&QE	AC smearing, subpixel location PSF quilting effect,
Spectral types	G2V	B1V, G2V, M6V
Mag. range	0.0≤G≤8	0.0≤G≤11
Magnitude step	ΔG=0.5	∆G=0.1
Regression test	2 stars (G=6, G=8)	6 stars (G=6, G=11)
Coverage(FOVs)	Telescope 1	Telescope 1
Coverage(Row)	Row4	Row1 & Row4
Outcome (set of optimum parameters)	EXT_WH = 128 EXT_IN_BUFFER=6 DELTA_MAG = 32	EXT_WH = 127 EXT_IN_BUFFER = 6 DELTA_MAG = 90 MAG_AL_LUT=[file] MAG_AC_LUT=[file]
Side effects	Completeness	Multiple detections

gaia

Observing Very Bright Stars with Gaia "Very" Bright Stars

VPU:5 O SM1 O AF1 @ AF2 O AF3 O AF4 O AF5 O AF6 O AF7 O AF8 O AF9 O BP O RP

Gaia Magnitude bright end G=2 !!

- > 62 stars are brighter than G=2
- Distance among extremities > EXT_WH maximum

NO extremities cross-match!! The star is not detected !!

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag. 14

Commissioning Real G limit

- > SMx Raw Data Buffers stores the FVPs.
- SIF (Service I/F):
 - > Read an copy an area in the memory of the VPU, i.e. the SM2 Raw Data Buffer.
 - > VPU generates a SIF packet and stores it to be downlinked.
 - > Ad-Hoc tools must be developed, i.e. data not treated by the Gaia pipeline.
- SIF command:
 - > 4 memory areas can be sampled simultaneously.
 - > 8MB per sample could be downloaded
- GOST (Gaia Observation Schedule Tool)
 - > The transit time and position must be predicted => GOST presently under development in SOC

> Gaia nominal magnitude range: $5.7 \le G \le 20$

> SOC investigation showed that **observing** very bright stars ($2.0 \le G \le 5.7$, N=5336) is possible \implies VPU optimum parametrization

> Achievable performance to be verified during commissioning

Data treatment by the nominal Gaia pipeline? To be tested

➢ Gaia Science Gain:

Parallaxes and proper motions of the brightest stars.

- Accurate masses of known exoplanets.
- New exoplanet detections
- Very bright binary stars.

> "Ultra" Bright Stars (G < 2, N=62): we are working on it ...

Observing "Very" Bright Stars with Gaia

Launch: 20th Dec 2013, 09:08:14 UTC (10:08:14 MAD)

Questions?

J. Martin-Fleitas A. Mora J. Sahlmann

R. Kohley

Observing Very Bright Stars with Gaia CCDS

Bright Stars

(Length of research horizon)

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag. 19

(max num of extremities per buffer)

Credit: Figure courtesy EADS-Astrium

Bright Stars

• Extremity: N & S => AC_ext

 $W \& E => AL_ext$

Extremity on-board magnitude:

$$AC_ext.mag = MAG_LOG \times \ln(flux_{sm}) + MAG_ZERO$$
$$AL_ext.mag = MAG_LOG \times \ln(flux_{sm}) + MAG_ZERO$$

• Extremity on-board magnitude corrected by pre-computed LUT:

$$mag _ AC = AC _ ext.mag + SW _ MAG _ AC _ LUT_{[fov][lut_index_ac]}$$
$$mag _ AL = AL _ ext.mag + SW _ MAG _ AL _ LUT_{[fov][lut_index_al]}$$

• Extremity on-board magnitude corrected by modeled PSF:

 $abs(mag_AC - mag_AL) \le DELTA_MAG$

• Bright Star magnitude:

$$gmag = \frac{(mag AC + mag AL)}{2}$$

VPU: on-board processing

- Gaia can not downlink the whole sky
- But the stars do not fill the whole sky.
- Objects selection on-board
- Detection & selection on-board.
- \bullet Small windows around the stars G < 20 observed.
- Video Processing Unit (VPU)
 - 7 units, one per CCD row.
 - Highly parametrized.

gaia

- Radiation hard components and operation.
- Processor Board:
- Maxwell Technologies "SCS750".
- 3 PowerPC. TMR (Triple Majority Redundancy).
- Software algorithms.
- Companion Board:
- 2 Actel FPGAs. Not patchable.
- Repetitive & high-BW processing

VPU: on-board processing Companion Board: HW processing

- 2 Actel FPGAs ("Castor" & "Pollux")
- Repetitive & high-BW processing tasks.
- Highly parameterized. Not patchable.
- ➤ 3 SRAMs:
 - SRAM1: store coefficients, intermediate data processing results,
 - SRAM2: store data prior to transmission to the Processor board.
 - SRAM3: store incoming and outgoing data packets for the PDHU.

esa

EADS Astrium

gaia VPU: on-board processing Processor Board: SW processing

- Single computer board designed for space.
- 3 TMR-protected PowerPC 750 FX processors,
 - error detection, resynchronisation & processor scrubbing
- Processing speed between 400 MHz 800 MHz
- > 256 Mbyte SRAM, 8 Mbyte EEPROM

esa

VPU: on-board processing Row, CDMU & PDHU I/F

European Space Agency

esa

VPU: on-board processing

Radiation hard components

Maxwell Technologies, Inc., San Diego, USA

Observing Very Bright Stars with Gaia Gaia Detection System

Gaia observation particularities

- Biggest FPA ever flown => 106 CCDs => Huge amount of TM
- > Two telescopes => two FOVs => on-board classification of objects from each FOV.
- Spinning mission => TDI mode operation

SUMMARY

- > FPA: detection/observation
- VPU: Observer
- PDHU: TM storage and limitations

Plano focal: integración

Credit: Images courtesy of ESA and EADS-Astrium

CCDs integration:

- Highly modular arrangement
- Precision alignment optically controlled
- Mounting of SiC CCD package to SiC CSS without shims.
- Astrometric field CCDs mounted to \pm 50µm flatness.

Plano focal: integración

Credit: Images courtesy of EADS-Astrium

European Space Agency

gaia

Observing Very Bright Stars with Gaia Gaia Focal Plane Array

>Largest FPA ever developed for space applications = > 1 Giga pixels.

>The FPA is common to both Gaia telescopes and is composed of five distinct areas:

• Metrology & Alignment (WFS & BAM)

 Wave-Front Sensor 	(2 CCDs) = > measure the optical quality of each telescope.	
 Basic Angle Monitor 	(2 CCDs) = > monitor fluctuations in the basic angle.	
Star Detection (SM1 & SM	12)	
– Sky Mappers	(2x7 CCDs) => The SMs identify which telescope is viewing the object.	
Astromery (AF)		
 Astrometric Field 	(62 CCDs) => Astrometric measurements.	\mathcal{I}
Photometry (BP & RP)		
- Blue Photometer	(7 CCDs) => low res. spectrophotometric measurements λ range = 330-680nm	
- Red Photometers	(7 CCDs) => low res. spectrophotometric measurements λ_{range} = 650-1050nm	

• Spectrometry (RVS)

- Radial Velocity Spectroscopy (3x4 CCDs) => spectra, R = $\lambda/\Delta\lambda$ = 11,500, V<17, λ_{range} = 847-874nm.

•All CCDs are read out in time-delayed integration mode (TDI) synchronised to the satellite scanning motion

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag. 29

Observing Very Bright Stars with Gaia Gaia Focal Plane Array

- Largest FPA ever developed for space applications => Almost 1 billion pixels.
- > The focal plane is common to both Gaia telescopes and is composed of five distinct areas:

Function	CCDs	Details		
Metrology and Alignment		 2 wave front sensors (WFS), 2 basic angle monitoring (BAM) CCDs 		
Star detection	14	.4 2×7 sky mapper (SM) CCDs, 7 per telescope		
Astrometry (AF)	6	52 8 × 7, 1 × 6		
Photometry (BP, RP)	1.	.4 7 blue and 7 red		
Spectrometry (RVS)	1	.2 3 × 4		

gaia

From Hipparcos to Gaia

2013

24 years of technological evolution

1989

	Hipparcos	Gaia	
Magnitude limit	12 mag	20 mag 🔍	
Completeness	7.3 – 9.0 mag	20 mag	
Bright limit	0 mag	6 mag	
Number of objects	120,000	26 million to V = 15	Large Focal
		250 million to V = 18	Plane
		1000 million to V = 20	
Effective distance	1 kpc	50 kpc	
Quasars	1 (3C 273)	500,000	
Galaxies	None	1,000,000	
Accuracy	1 milliarcsec	7 µarcsec at V = 10	Extremely
		10 – 25 µarcsec at V = 15	stable
		300 μ arcsec at V = 20	optical
Photometry	2-colour (B and V)	Low-res. spectra to $V = 20$	bench
Radial velocity	None	15 km s ⁻¹ to V = 17	
Observing	Pre-selected	Complete and unbiased	

Observing Very Bright Stars with Gaia Focal Plane Array 106 CCDs , 938 million pixels, 2800 cm²

Window observed

Window transmited

Procesado a bordo: Una VPU por fila 🖉 esa

106 CCDs , 938 million pixels, 2800 cm^2

Movimiento de las imágenes

European Space Agency

Observing Very Bright Stars with GaiagaiaGaia Observation System

- Biggest FPA ever flown => 106 CCDs => Huge amount of TM.
- 2 telescopes combined => on-board classification of objects.
- Spinning mission => 0

Credit: Figure courtesy EADS-Astrium

Bright Stars Detection VPU parameters Configuration

New VPU default configuration

EXT_WH = 127, EXT_IN_BUFFER = 6, DELTA_MAG = 90, MAG_AL_LUT = [file], MAG_AC_LUT = [file].

G _{min}	Row 1			Row 4		
	В	G	Μ	В	G	Μ
Nominal AC/AL speed	2.0	1.8	1.6	2.2	1.8	2.0
Maximal AC speed	2.0	1.7	1.4	2.0	1.6	1.9
Maximal AL speed	2.0	1.8	1.6	2.2	1.8	2.0

Output_1_0.190_60.000_M_1.4_+0.00\ - Param#:

Bright Stars Detection VPU parameters Configuration

Lisajous orbit

http://sci2.esa.int/interactive/media/flashes/5_5_1.htm

G _{min}	Row 1			Row 4		
	В	G	Μ	В	G	Μ
Nominal AC/AL speed	2.0	1.8	1.6	2.2	1.8	2.0
Maximal AC speed	2.0	1.7	1.4	2.0	1.6	1.9
Maximal AL speed	2.0	1.8	1.6	2.2	1.8	2.0

Observing Very Bright Stars with Gaia Gaia Observation System

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag. 38

Credit: Figure courtesy EADS-Astrium

Observing Very Bright Stars with Gaia Focal Plane Array

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag.

European Space Agency

"Very" Bright Stars

gaia

Detection

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag. 41

Credit: Figure courtesy EADS-Astrium. Animation: Berry Holl & Juanma Fleitas

"Very" Bright Stars

arameters to be optimized:

N_BUFFER: max. nb of extremities on buffer.

VH: Working Horizon.

_MAG: max. difference in magnitude.

AL_LUT: AL magnitude correction.

AC_LUT: AC magnitude correction.

Observing Very Bright Stars with Gaia G > 2

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag.

gaia

Credit: Figure courtesy EADS-Astrium. Animation: Berry Holl & Juanma Fleitas

"Very" Bright Stars

Detection & FOV Discrimination

gaia

J. Martin-Fleitas | 6th-IDSW | 2013/11/19 | Pag. 44

Credit: Figure courtesy EADS-Astrium. Animation: Berry Holl & Juanma Fleitas

"Very" Bright Stars

VPU parameters Optimisation

gaia

Output_1_0.190_60.000_M_1.4_+0.00\- Param#: True stars Observed faint objects 820 Observed objects after extremities matching Detected extremities **V** Matching extremities 800 -Xfpa,+Xsat (2xPixelAC) 780 760 740 720 700 Ú¥ 680 Bright G=1.4 M spectrum Bright detected (=1) 660 77 false detections Gmag = 5.0 (1023) deltaMag = 46 640 550 700 600 650

esa

Gaia Magnitude bright end G=2 !!