Metallicity of M33 using Planck data

L. Fauvet
F. Israel, R. Laureijs, R. Leonardi, J. Tauber

ISDW 2013
What about M33?

nearby spiral Galaxy with expected low metallicity.

IRAS + ISO + Spitzer

SED

M33 spectrum

Flux Density (Jy)

Frequency (GHz)

Submm continuum to be determined ...

courtesy F.Israel
SED and dust characteristics

Submm continuum: dominated by thermal dust emission

peak of the black body: constraint on the dust grain temperature.

information on the surrounding medium.

slope: constraint on β which could be an indicator of the metallicity.

\Rightarrow nature of the dust grains.

strong degeneracy between β and T.

courtesy F.Israel
Why do we need Planck data?

- data currently available not enough to constrain \(\rightarrow \) peak wavelength : \(T_d \)
 \(\rightarrow \) Rayleigh-Jean slope : \(\beta \)

- \(\beta \) and \(T \) not independents : requires accurate fit on both.

- PCCS (Planck Catalogue of Compact Sources) ?

 ➞ contains compact sources \(\sim \) few arcmin.

 ➞ more accuracy needed to solve a specific extended source like M33.

 ➞ especially : gradient expected between the center similar to MW and the arms similar to the LMC.

combined use of Planck data + SPIRE + PACS to conclude
Method (1/3)

data used: 2013 Planck public data release of HFI 100 – 857 GHz

2 complementary approaches:

⇒ full galaxy [square patch of 30 arcmin²].

⇒ 3 restricted area: center, West and East arms.
Method (2/3) : full galaxy photometry

- convolution with 100 GHz channel beam (10arcmin).
- subtraction of CMB.
- removal of the galactic foreground.
- calculation of the flux associated to each patch.
Method (3/3) : photometry of restricted area

- fixed 5 arcmin resolution (30-353 GHz) : average value over the width of the size.
- selected 3 positions along the slice running over the major axis of the galaxy
- west and east arm at 4kpc from center

- constant background subtraction (uncertainties of ½ difference of foregrounds in West and East arms)
- CMB removal
CMB removal and other uncertainties

4 CMB removal method

all show differences at M33 center

⇒ value on M33 position not reliable

⇒ to be take into account as an uncertainty.

Other uncertainties:

• foreground removal based on average calculation: existing gradient?

• instrumental noise
Photometry calculation

- Planck HFI
- SPIRE (total flux [Kramer et al 2011])

- consistency of both set but bias due to calibrations and beam correction on SPIRE data have to be taken into account for the all galaxy photometry.

- on restricted area: error bars to be improved.

- power law behaviour.
Fit with modified black body body

\[F(\nu, \beta_d, T_d) = \left(\frac{\nu}{\nu_0} \right)^{\beta_d} \frac{\exp^{\frac{h\nu}{kT_d}} - 1}{\exp^{\frac{h\nu}{kT_0}} - 1} \]

\(X^2 \) min based comparison method

The SED associated to each area of M33 considered is compared to a modified black body based on Planck law:

\[F(\nu, \beta_d, T_d) = \left(\frac{\nu}{\nu_0} \right)^{\beta_d} \frac{\exp^{\frac{h\nu}{kT_d}} - 1}{\exp^{\frac{h\nu}{kT_0}} - 1} \]

from this comparison we extracted best-fit values for the 2 parameters \(\beta_d \) and \(T_d \) in those regions, considering the data between 143 and 857 GHz to set the parameters.
Preliminary results

<table>
<thead>
<tr>
<th>ν (GHz)</th>
<th>Parameter</th>
<th>Center</th>
<th>West arm</th>
<th>East arm</th>
<th>full M33</th>
</tr>
</thead>
<tbody>
<tr>
<td>217 to 545</td>
<td>β_d</td>
<td>1.34 ± 10^{-3}</td>
<td>1.23 ± 0.02</td>
<td>1.36 ± 0.05</td>
<td>1.31 ± 0.16</td>
</tr>
<tr>
<td>217 to 857 (+spire)</td>
<td>β_d</td>
<td>1.33 ± 10^{-3}</td>
<td>1.02 ± 0.01</td>
<td>1.13 ± 5.10^{-3}</td>
<td>1.42 ± 0.11</td>
</tr>
<tr>
<td>217 to 545</td>
<td>T_d</td>
<td>23.55 ± 10^{-3}</td>
<td>23.88 ± 0.01</td>
<td>19.72 ± 0.08</td>
<td>22.98 ± 0.22</td>
</tr>
<tr>
<td>217 to 857 (+spire)</td>
<td>T_d</td>
<td>23.67 ± 2.10^{-3}</td>
<td>21.38 ± 0.02</td>
<td>19.92 ± 0.06</td>
<td>23.72 ± 0.15</td>
</tr>
</tbody>
</table>

Starburst, AGN (high metallicity galaxies)

$\Rightarrow \beta = 1.68 \pm 0.06$

Low metallicity dwarf galaxies [Kramer 2011]

$\Rightarrow \beta = 1.08 \pm 0.12$

MW : 1.63 ± 0.3 [Planck 2013 results XXXI]

M33 $\Rightarrow \beta \approx 1.30$ (based only on Planck) on average : medium metallicity

ISDW 2013
Conclusions and work ahead ...

• good consistency between Planck and SPIRE (bias due to calibration to be corrected)

• preliminary results: M33 in between high and low metallicity will study of separate area shows different behaviour?

TO BE DONE ...

• LFI data to be used: flat slope at low frequencies?
• PACS data to be add: improvement of constraint on T

• better estimation of the uncertainties

• calibration Herschel/Planck to be understood.

• color correction factor to be apply.

• contamination by radio continuum (synchrotron and free-free) to be estimated

• extension of the work to NGC6822 (another low metallicity galaxy)