What are ‘debris disks’ & why interesting?

Discovery by IRAS: ‘IR excess’
- Surprise discovery: ~15-20% of nearby A-K stars show larger IR flux than predicted from the stellar photosphere (e.g. Aumann 1985)
- ‘Vega phenomenon’ – ‘Fab four’:
 - Vega – A0V at 7.8 pc, ~350 Myr
 - β Pictoris – A5V at 19 pc, ~12 Myr
 - Fomalhout – A3V at 7.7 pc, ~200 Myr
 - ε Eridani – K2V at 3.2 pc, ~800 Myr

Confirmed by later studies
- ISO @60 µm (Habing et al. 2001):
 - 14 of 84 (17%) A-K stars at <25 pc
 - A stars over-represented
- Spitzer @70 µm (Trilling et al. 2006):
 - A stars: ~ (26 +10/-7) %
 - FGK stars: ~ (21 +7/-5) %
 - M stars: 0

Interpretation of observed IR excess
- Dust grains around stars
- Need to be replenished, on time-scales short compared to stellar ages
- Infer planetesimals (<10s of km), dust produced by ‘collisional cascades’
- Connection to planets ‘unclear’

Our solar system
- Asteroid (‘zodiacal’) and EKB
- Could not be observed if at 10 pc!
Comet massacre around Fomalhaut

Herschel/PACS @70 μm

Acke et al. 2012
A&A 540, A125
Comet massacre around Fomalhaut

- Optically large >50 μm grains, thermal small (blow-out) grains => ‘fluffy aggregates’
- Replenishment time \sim1700 yrs
- Mass loss (=production) rate \sim2000 (1 km) comets per day
- Reservoir of \sim1013 comets, with a total mass of \sim100 M_{Earth}
- Currently a remarkably violent system!
• Spitzer/IRAC 22-34 um
• Herschel/PACS 69 um band => Mg-rich crystalline olivine
• Mg-rich => ‘pristine’
• Fe-rich => ‘processed’
Debris Disks and DUNES Open Time KP

Overall objective: Detect and characterise faint exo-solar analogues to the solar system Edgeworth-Kuiper Belt (EKB)

- Direct proof of incidence of planetesimal systems (possible indirect one of planets)
- Specifically, to evaluate the
 - fraction of solar-type stars with faint, EKB-like, discs
 - collisional and dynamical evolution of these EKB analogues
 - dust properties and size distribution of these EKB analogues
 - incidence of EKB-like discs versus host star properties, including the presence of planets
Debris Disks and DUNES Open Time KP

Debris Disks and DUNES Open Time KP

Overall objective: Detect and characterise faint exo-solar analogues to the solar system Edgeworth-Kuiper Belt (EKB)

- Direct proof of incidence of planetesimal systems (possible indirect one of planets)

Specifically, to evaluate the

- fraction of solar-type stars with faint, EKB-like, discs
- collisional and dynamical evolution of these EKB analogues
- dust properties and size distribution of these EKB analogues
- incidence of EKB-like discs versus host star properties, including the presence of planets

The DUNES sample

- FGK stars <20 pc (+known planet/disk stars <25 pc)
- Detect photosphere (L_{star}) with SNR >5 @100 μm, puts reqs on background => avoid galactic plane
- Time allocation: split & share with DEBRIS
- DUNES 20 pc sample: 20 F, 50 G, 54 K, Σ 120
- DEBRIS 20 pc sample: 32 F, 16 G, 8 K, Σ 56
- **Sun:** EKB peaks ~50 μm, PACS fluxes ~0.1-0.4 mJy, and ‘fractional luminosity’ $f_d = \frac{L_{\text{disk}}}{L_{\text{star}}} \sim 10^{-7}$
<table>
<thead>
<tr>
<th>Spectral type</th>
<th>F</th>
<th>G</th>
<th>K</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>20</td>
<td>50</td>
<td>54</td>
<td>124</td>
</tr>
<tr>
<td>Observed</td>
<td>20</td>
<td>50</td>
<td>54</td>
<td>124</td>
</tr>
<tr>
<td>Excess #</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Excess %</td>
<td>20</td>
<td>22</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>
Points noted:

- Of these 124 stars 15 (12%) have Spitzer disk detections
- Herschel disk detection is a factor 25/15 (~1.7) higher
- Herschel has resolved many more disks
- Mean f_d values for ‘new’ & ‘old’ disks are $\sim 4 \times 10^{-6}$ & $\sim 4 \times 10^{-5}$
- Mean disk temp T_d for ‘new’ & ‘old’ disks are ~ 34 K & ~ 64 K
- Mean black body radius for ‘new’ & ‘old’ disks are ~ 82 AU & ~ 38 AU

Herschel has detected fainter, colder, larger disks – as expected

<table>
<thead>
<tr>
<th>Spectral type</th>
<th>F</th>
<th>G</th>
<th>K</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>20</td>
<td>50</td>
<td>54</td>
<td>124</td>
</tr>
<tr>
<td>Observed</td>
<td>20</td>
<td>50</td>
<td>54</td>
<td>124</td>
</tr>
<tr>
<td>Excess #</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Excess %</td>
<td>20</td>
<td>22</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Eiroa et al. 2013 A&A 555, A11
Example observations

Top: HIP13402, PACS 100 µm, PACS 160 µm, SED; bottom HIP 14954

Eiroa et al. 2013 A&A 555, A11
What do we learn – correlations!?

Legend
• F stars
• G stars
• K stars
• f_d units of 10^{-7}

Correlations?
• f_d vs age?
 – no
 – surprise!?
• R_d vs age?
 – weak?
• T_d vs age?
 – weak anti?

Eiroa et al. 2013
A&A 555, A11
Comparison of 37 stars known to host RV planets with 11 DUNES/DEBRIS cold debris disks – disk incidence ~30%

Legend
- Disks: debris disks, triangles: upper limits
- Data points:
 - Blue – low mass planet (<30 M_{Earth}~0.1 M_{Jup})
 - Green – hot giant planet (>0.1 M_{Jup}, R_{P}<0.1 AU)
 - Red – cold giant planet (>0.1 M_{Jup})

Correlations?
- Fract luminosity f_d vs stellar age – no
- Metallicity [Fe/H] vs f_d – ?
- Photospheric temp vs f_d – no
- Mass of most massive planet vs f_d – ?
- Orbit eccentricity of innermost planet vs f_d – no
- Orbit semi-major axis of outer exopl vs f_d – no

Legend
- Disks: debris disks, triangles: upper limits
- Data points:
 - Blue – low mass planet
 - Red – cold giant planet
 - Green – hot giant planet

Correlations?
- Metallicity \([\text{Fe/H}]\) vs \(f_d\) – (?) (19 sub- & 18 supra-solar Z)
- 9 disks low Z stars & 2 disks high Z stars
- Low mass planets – all 10 low Z stars, many (5/10) disks
- Cold giant planets – all stars, some (6/22) disks
- Hot giant planets – all 5 high Z stars, no (0/5) disks

Legend
• Disks: debris disks, triangles: upper limits
• Data points:
 • Blue – low mass planet
 • Red – cold giant planet
 • Green – hot giant planet

Correlations?
• Metallicity [Fe/H] vs f_d – ? (19 sub- & 18 supra-solar Z)
• 9 disks low Z stars & 2 disks high Z stars
• Low mass planets – all 10 low Z stars, many (5/10) disks
• Cold giant planets – all stars, some (6/22) disks
• Hot giant planets – all 5 high Z stars, no (0/5) disks

Correlations?
• Mass of most massive planet vs f_d – ?
• Low mass planets – w/wo disks
• Cold giant planets – w/wo disks
• Hot giant planets – no disks!

In summary, what we observe:

- **All 10 low mass planets** with low Z stars (10/19 vs 0/18), many (5/10) with disks.
- Cold giant planets – with low (9/19) & high Z (13/18) stars, some (6/22) disks, (4/9) low Z & (2/13) high Z stars.
- **All 5 hot giant planets** with high Z stars (5/18 vs 0/19), none (0/5) with disks.

What we see:

- **All 10 low mass planets** with **low Z** stars (10/19 vs 0/18), many (5/10) with disks
- Cold giant planets – with low (9/19) & high Z (13/18) stars, some (6/22) disks, (4/9) low Z & (2/13) high Z stars
- **All 5 hot giant planets** with **high Z** stars (5/18 vs 0/19), none (0/5) with disks

Correlations

- Exoplanet host star sample is **not** significantly different from the (larger and unbiased wrt to planets) DUNES sample
- **No trend** wrt disks and **spectral type** of FGK stars
- **Hot giant planets** and other planets do **not** come from same underlying distribution of stars, and have **no disks**
- **Low Z** stars are more likely to have **low mass planets**, and to have **detectable debris disks**
- **Low mass planets** are more likely to be **associated with debris disks**

Some thoughts

It must not be forgotten:
• We are talking relatively small number statistics
• We define ‘stars with debris disks’ (SDD) and ‘stars with planets’ (SP), but we must not forget that
 • SDD have disks of certain f_d, but possibly all (FGK) stars have DDs at some level

It must not be forgotten:

- We are talking relatively small number statistics
- We define ‘stars with debris disks’ (SDD) and ‘stars with planets’ (SP), but we must not forget that
 - SDD have disks of certain f_d, but possibly all (FGK) stars have DDs at some level
 - SP have known planets, but our knowledge of planets is not unbiased
 - The sun is neither SDD nor SP!
- When talking about SDD and/or SP you need to state clearly what you mean!
Some thoughts & possible scenario

It must not be forgotten:
• We are talking relatively small number statistics
• We define ‘stars with debris disks’ (SDD) and ‘stars with planets’ (SP), but we must not forget that
 • SDD have disks of certain f_d, but possibly all (FGK) stars have DDs at some level)
 • SP have known planets, but our knowledge of planets is not unbiased
 • The sun is neither SDD nor SP!
• When talking about SDD and/or SP you need to state clearly what you mean!

‘Scenario’: low Z stars, low mass planets, and debris disks
• A star forms surrounded by a protoplanetary disk of gas and dust
• Gas is lost/stripped from the disk too quickly for gas giants to form
• Low mass planets form, but do not scatter planetesimals strongly enough
• Speculative – time will tell!

THANK YOU!