A Herschel/HIFI Legacy Survey of HF in the Galaxy: Diffuse Molecular Clouds at Small Scales

Paule Sonnentrucker

(ESA/STScI)

In collaboration with: David Neufeld (JHU/USA), Mark Wolfire (UMD/USA) Maryvonne Gerin (LERMA/FR) & The Herschel PRISMAS & WISH Teams

Diffuse Molecular Clouds in a Nutshell

Traditionally observed in FUV/Optical range

BUT

Dust scattering limits Galactic disk studies to:

A Schematic View of Interstellar Medium

Adapted from Snow & McCall (2006)

Diffuse Molecular Clouds in a Nutshell

GTKP PRISMAS (PRobing the InterStellar Medium with Absorption line Studies) goal:

Use sub-mm range to complement FUV/Optical studies and probe diffuse molecular clouds chemistry \diamond at larger Av

- \diamond at greater Galactic distances
- \diamond with a greater variety of (detectable) molecular tracers

Diffuse Molecular Clouds in a Nutshell

Are there valuable alternatives to CH?

F reacts exothermically with H_2 thanks to reaction:

 $F + H_2 \longrightarrow HF + H + 1.4eV$

Predictions:

- 1. HF traces H_2 from onset of H_2 formation
- 2. Since tau(HF) > tau(CH), HF expected to trace diffuse clouds of lower A_V than CH
- 3. HF abundance varies with cloud depth with: $1.0x10^{-8} \le N(HF)/N(H_2) \le 2 x [F/H]_{gas} = (3.6 \pm 1.6)x10^{-8}$ wherever freeze-out is not significant yet

Adapted from Neufeld & Wolfire (2009)

Do Herschel/HIFI observations confirm those predictions?

Observations combining PRISMAS, WISH and OT2 data

Predictions:

1. HF traces H_2 from onset of H_2 formation \checkmark

HF ubiquitous in Galactic disk which validates chemical pathways

HF is measured in clouds of molecular fractions as low as 5% (*Neufeld et al. 2010*)

HF and H₂O trace each other very closely!

Adapted from Neufeld & Wolfire (2009)

HF and CH are complementary tracers of H₂!

Predictions:

(e.g. Sonnentrucker et al. (2010, 2012, 2013 in prep; Indriolo et al. (2013); Emprechtinger et al. 2012; Monje et al. 2011; Neufeld et al. 2010)

F reacts exothermically with H_2 thanks to reaction:

 $F + H_2 \longrightarrow HF + H + 1.4eV$

Predictions:

- HF traces H_2 from onset of H_2 formation 1.
- Since tau(HF) > tau(CH), HE or 2. diffuse clouds of low

HF is very anes with cloud depth with: $1.5 \times 10^{-8} \le N(HF)/N(H_2) \le 2 \times [F/H]_{gas} = (3.6 \pm 1.6) \times 10^{-8}$ wherever freeze-out is not significant yet

Adapted from Neufeld & Wolfire (2009)

Do Herschel/HIFI observations confirm those predictions?

H₂O abundance distribution in probed Galactic Disk Diffuse Clouds

♦ All measurements fitted by models with 0.7 < zeta < 2x10⁻¹⁶ s⁻¹ and 50 < n_H < 300 cm⁻³
 ♦ All sight lines contain multiple foreground clouds with range of physical conditions
 ♦ H₂O abundance variation driven mostly by cosmic-ray ionization variations

H₂O abundance distribution with distance in the Galaxy

No clear dependence in Water abundance with Galacto-centric distance

Herschel/HIFI Survey of HF and H₂O the Galaxy Diffuse ISM: Conclusions

Herschel/HIFI Survey of HF established that:

♦ the measured HF abundance relative to H₂ is consistent with chemical model predictions
 ♦ HF provides a sensitive probe of clouds of small H₂ column density
 ♦ HF is a valuable tracer of H₂ over a large range of H₂ column densities

Herschel/HIFI Survey showed a striking distribution similarity between H₂O and HF !

 ↔ H₂O abundance relative to HF has no dependence with Galacto-centric distance

 ↔ H₂O abundance relative to HF is mostly driven by cosmic-ray ionization

 ♦ allowed us to constrain physical conditions in probed diffuse Galactic Disk ISM

Herschel/HIFI Observations will serve as templates for studies of the ISM at high redshift now possible from the ground with ALMA NB: HF already observed at z=2.56 using CSO (cloverleaf quasar: Monje et al. 2012)

ADDITIONAL MATERIAL

