Understanding uncertainties in early Gaia astrometry

Daniel Michalik

Ph.D. student at Lund Observatory

ESA SRE-OD Research (with Uwe Lammers)

Upcoming Gaia releases

Exciting times ahead!

- One month to launch
- Five data releases foreseen:
 - Stay tuned for the first release end of 2015
 - Be patient till the final release end of 2022
- Caveat: Preliminary schedule

Summary release schedule

- Science Alerts: as soon as possible (Oct 2015)
- L + 22 months: positions, G-magnitudes, proper motions to Hipparcos stars, ecliptic pole data
- L + 28 months: + first 5 parameter astrometry, radial velocities, integrated photometry
- L + 40 months: + first BP/RP spectrophotometry, RVS spectra, orbital solutions for short period binaries
- L + 65 months: + variability, solar system objects
- L + 101 months: final catalogue release (2022) incl. all individual observations, non-single stars, extra-Galactic sources etc.

BP/RP: Blue/Red Photometer, RVS: Radial Velocity Spectrometer

First release, launch + 22 months

Oct 2015

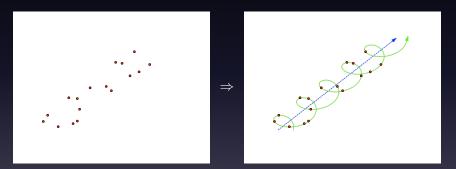
- Roughly one year of astrometric data
- · Stars showing "single star behaviour" only

First release, launch + 22 months

Oct 2015

- Roughly one year of astrometric data
- · Stars showing "single star behaviour" only
- Impossible: 5 parameters (position, parallax, proper motion)
 ⇒ Publish positions only (and G magnitudes)
 - ... what are their uncertainties?

First release, launch + 22 months


Oct 2015

- Roughly one year of astrometric data
- · Stars showing "single star behaviour" only
- Impossible: 5 parameters (position, parallax, proper motion)
 Publish positions only (and G magnitudes)
 what are their upportainties?
 - ... what are their uncertainties?
- The Hundred Thousand Proper Motions project (HTPM):
 Proper motions and improved parallaxes of Hipparcos stars

Number of parameters

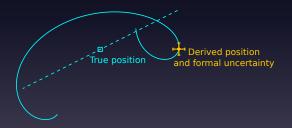
- Gaia aims at determining at least five parameters for all stars: position (α , δ), parallax (ϖ), proper motion ($\mu_{\alpha*}$, μ_{δ})
- For some stars additional sixth parameter (radial motion μ_r)

But:

- Disentangling the components requires sufficient observations
- \Rightarrow Not possible for short time intervals

Daniel Michalik, 20 Nov 2013

Understanding uncertainties in early Gaia astrometry, 5/10


- Assumes zero parallax and proper motion
- Real parallaxes and proper motions are non zero!
- Different values can lead to the same derived position \neq true position

+ Derived position and formal uncertainty

• What is this observation?

- Assumes zero parallax and proper motion
- Real parallaxes and proper motions are non zero!
- Different values can lead to the same derived position \neq true position

Is this a nearby dwarf (cyan)?

- Assumes zero parallax and proper motion
- Real parallaxes and proper motions are non zero!
- Different values can lead to the same derived position \neq true position

Is this a nearby dwarf (cyan) or a distant giant (red)?

- Assumes zero parallax and proper motion
- Real parallaxes and proper motions are non zero!
- Different values can lead to the same derived position \neq true position

· Formal uncertainties underestimate the actual errors

Bayesian approach:

probabilistic modelling to constrain unknown parameters

- 1 Previous astrometric results
 - Hundred-Thousand Proper Motion project: Solving for five parameters of the Hipparcos stars
- 2 Upper limits on parameters
- 3 Monte Carlo simulations using a Galactic Model
- 4 ..

Hundred Thousand Proper Motions

Combination with previous astrometric results from Hipparcos

- Allows disentangling all five astrometric parameters
- Order of magnitude improvements of the Hipparcos star PM: $\sigma_{Hip} \simeq 1\,000\mu as/yr \Rightarrow \sigma_{HTPM} \simeq 40\mu as/yr$
- Compare HTPM results to Gaia alone: allows to detect non-uniform space motion, long period binaries

 \Rightarrow L+22m release: publish five parameters for 10⁵ stars

Daniel Michalik, 20 Nov 2013

Understanding uncertainties in early Gaia astrometry, 8/10

Hundred Thousand Proper Motions

Combination with previous astrometric results from Hipparcos

Documentation in preparation:

Optimal combination of astrometry from Hipparcos and Gaia

The Hundred Thousand Proper Motions project

Daniel Michalik¹, Lennart Lindegren¹, David Hobbs¹, and Uwe Lammers²

Understanding uncertainties in early Gaia astrometry, 8/10

How to get more realistic uncertainties

Bayesian approach:

probabilistic modelling to constrain unknown parameters

Prior information on unknown parameters could come from:Previous astrometric results: HTPM

How to get more realistic uncertainties

Bayesian approach:

probabilistic modelling to constrain unknown parameters

- 1 Previous astrometric results: HTPM
- 2 Upper limits on parameters (e.g. 1 arcsec)

Bayesian approach:

probabilistic modelling to constrain unknown parameters

- 1 Previous astrometric results: HTPM
- 2 Upper limits on parameters (e.g. 1 arcsec)
- 3 Monte Carlo simulations of a Galactic Model
 - Non-zero realistic parallax and proper motion
 ⇒ Understanding the uncertainties in early Gaia results

Bayesian approach:

probabilistic modelling to constrain unknown parameters

- Previous astrometric results: HTPM
- 2 Upper limits on parameters (e.g. 1 arcsec)
- 3 Monte Carlo simulations of a Galactic Model
 - Non-zero realistic parallax and proper motion
 ⇒ Understanding the uncertainties in early Gaia results
 - · Parameters themselves independent from our Galactic model

Summary

- One year of data is insufficient for five parameter solutions
- Instead: positions only (two parameters)
- · Formal uncertainties grossly underestimate real errors
- · Bayesian approach: use of prior information
 - ... to perform five parameter solutions with one year of data
 - ... to gain a much improved characterization of the real errors
- Same approach applicable to later releases (radial velocity etc)

Summary

- One year of data is insufficient for five parameter solutions
- Instead: positions only (two parameters)
- · Formal uncertainties grossly underestimate real errors
- · Bayesian approach: use of prior information
 - ... to perform five parameter solutions with one year of data
 - ... to gain a much improved characterization of the real errors
- Same approach applicable to later releases (radial velocity etc)

Two benefits:

- More realistic uncertainties for the position errors
 ⇒ An improved understanding of the (early) Gaia releases
- 2 The Hundred Thousand Proper Motion results ($\sigma \simeq 40 \mu as/yr$) ,