Status of the FIR polarisation mapping experiment PILOT

Context

PILOT: **P**olarised **I**nstrument for **L**ong wavelengh **O**bservation of the **T**enuous interstellar medium

Faculty supported project

- Initially: support design of the cryogenic part of the payload
- Present: analyse/design the PILOT baffling system, based on straylight analysis methods

Actors:

- CNES: Project Team
- ✓ **PI:** J.-P. Bernhard (IRAP, Toulouse)
- Co-Is: IAS Orsay CEA Saclay, Rome, Cardiff, ESA

Polarisation of interstellar dust

Elongated (large) dust grains:

- Rotate due to their absorption and emission of light
 - Rotation quickly aligns with small axis of the grain
 - Rotation slowly aligns with the magnetic field B

B

ω

Dust grain

- □ Absorb preferentially along major axis:
 - > Polarisation in extinction parallel to B
- □ Radiate preferentially along the major axis:
 - Polarised emission perpendicular B

Large grains: 0.01 – 0.2 micron

PILOT Science Objectives

- Measure *linear* polarisation of interstellar dust emission in the FIR
- Investigate the geometric and magnetic properties of interstellar dust grains (size, shape, magnetic susceptibility)
- Reveal the structure of the galactic magnetic field
- Complement Planck Observations

Eventually:

Learn about the dusty foregrounds affecting CMB polarisation observations, including spectral dependence

PILOT vs Planck

- Planck: dust polarization over the full sky at 353, 217, 143, 100 GHz
- Planck: Limited sensitivity to very low surface brightness (Av>4 mag) at 10% accuracy.
- Pilot: higher angular resolution
- A factor of 10-50 can be gained by going to higher frequencies
- \Box Variations with λ important for dust

PILOT | R. Laureijs, et al | IDWS 2013-11-20 | Slide 5 ESA UNCLASSIFIED - For Official Use

PILOT Experiment

PILOT | R. Laureijs, et al | IDWS 2013-11-20 | Slide 6 ESA UNCLASSIFIED - For Official Use

- □ M1 diameter: 700 mm
 - \rightarrow Resolution: 1.4'/3.3'
- Photometric Channels:
 - > 240/550 microns Detection limit: S(3 σ) ~ 0.3/0.4 MJy/sr
- □ FOV: 46'*23'
- > Gondola mass: ~ 700 kg
- Flight altitude: ~ 40 km

Planning

- Objective on astronomical targets
 - Galactic plane survey
 - Deep field on cirrus clouds
 - Large and Small Magellanic Clouds
- Source visibility requires combination of 3 flights from different launch sites (different latitudes)
- □ Preliminary launch sites, night time only:
 - Timmins Canada (lat 48.5°, flight #1)
 - Kiruna Sweden (lat = 60°, flight #2)
 - Alice Spring Australia (lat = -23°, flight#3,)
- □ Simulations performed with realistic parameters:
 - mapping speed: 300 sq deg/h
 - ➢ Slew speed =24'/s
 - Scan amplitude=20°

Baffle designs and Straylight

Balloon and Earth: strong submm straylight sources

The balloon skin caused an unexpectedly strong systematic signal

Archeops balloon experiment measured dust polarization at 353 GHz (850 μm) of a fraction of the galactic plane

PILOT | R. Laureijs, et al | IDWS 2013-11-20 | Slide 9 ESA UNCLASSIFIED - For Official Use

Straylight Analysis

- Computations initially sequential Zemax, later using ASAP software, taking into account instrument optics
- Include Earth and balloon contributions
- Demonstrated superiority of reflective baffles
- Investigation of various baffle geometries

Balloon Straylight

European Space Agency

<code>PILOT | R. Laureijs, et al | IDWS 2013-11-20 | Slide 10</code> ESA UNCLASSIFIED – For Official Use

Investigations

Table 2. Simulation results coparison: updated versus initial baffle designs.

Stray light	30° elevation		53° elevation	
power [W]	Initial design	Updated design	Initial design	Updated design
From balloon	2*10^-12	1.37*10^-12	2.9*10^-11	1.13*10^-11
From Earth	4*10^-11	4.62*10^-11	6.8*10^-12	7.3*10^-12

	-				
Elevation angle,	30	42	53		
degrees					
For balloon stray light:					
Stray light signal as compared to baffle without vanes	23%	56%	34%		
For Earth stray light:					
Stray light signal as compared to baffle without vanes	25%	24%	22%		

Table 3. Simulation results comparison: updated versus initial baffle designs.

Stray light	30° elevation		53° elevation	
power [W]	Initial design	Staircase design	Initial design	Staircase design
From balloon	2*10^-12	0.87*10^-12	2.9*10^-11	2.6*10^-11
From Earth	4*10^-11	1.5*10^-12	6.8*10^-12	0

	Fixed straylight	1 mag ISM	Δ straylight (Archeops)
W/m^2	10 ⁻⁸	2.14 10 ⁻¹⁰	5.2 10 ⁻¹⁰
pW/pix	5.6 10 ⁻³	1.2 10 ⁻⁴	2.9 10 ⁻⁴
MJy/sr	812	17.4	42.2

<code>PILOT | R. Laureijs, et al | IDWS 2013-11-20 | Slide 11</code> <code>ESA UNCLASSIFIED - For Official Use</code>

Near Future work

- Tilted vanes: no improvement
- Redo Calculations with 3 vanes
- Investigate elliptical vanes:
 - The vanes in this baffle are sections c

on the tip of the preceding vane and the other focus on the edge of the baffle entrance aperture

<code>PILOT | R. Laureijs, et al | IDWS 2013-11-20 | Slide 12</code> ESA UNCLASSIFIED - For Official Use

PILOT Outlook

- First testflight was done in September this year to validate the new CNES navigation and communication system.
- □ First science flight expected in April 2015 from Timmins, Canada
- □finally start scientific interpretation