

Large inner holes and narrow outer disks from Herschel's observations of transitional disks in Lupus

> Ignacio Bustamante Bengoechea – ESA, CAB Bruno Merín – ESAC, ESA Álvaro Ribas – ESA,CAB, ESAC Hervé Bouy – CAB

Catarina Alves de Oliveira - ESAC, ESA, E. Puga - ESAC, ESA, R. Vavrek - ESAC, ESA, T. Prusti - ESTEC, ESA, Á. Kóspál - ESTEC, ESA, N. L. J. Cox - K.U. Leuven , G.L. Pilbratt - ESTEC, ESA, Ph. André - CEA, Saclay

Lupus III region - ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin http://www.space.com/19286-dark-space-cloud-stars-photo.html

Introduction to transitional disks

Main characteristics

Young stars with disks

Little or no excess at 10µm

Significant one at longer wavelengths

Inner disk clearing - gap

Due to cplanet formation?

Inner Gap in Circumstellar Disk

NASA / JPL-Caltech / D. Watson (University of Rochester)

Spitzer Space Telescope • IRS

Introduction to transitional disks

Young stars with disks

Little or no excess at 10µm

Significant one at longer wavelengths

Inner disk clearing - gap

Due to *cplanet* formation?

Inner Gap in Circumstellar Disk

Spitzer Space Telescope • IRS

NASA / JPL-Caltech / D. Watson (University of Rochester)

Introduction to transitional disks

IDSW - 2013

NASA / JPL-Caltech / D. Watson (University of Rochester)

Herschel data

IDSW - 2013

ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

Lupus III - far IR

Herschel imaging instruments	PACS	SPIRE
Wavelengths (µm)	70, 100, 160	250, 350, 500

Herschel data

(250 µm)

Herschel Gould's Belt Survey (PI: Ph. André)

Lupus III - far IR

Herschel data

IDSW - 2013

217 known YSO

114 detected in Herschel's maps

Herschel imaging instruments	PACS	SPIRE
Wavelengths (µm)	70, 100, 160	250, 350, 500

(250 μm)

Herschel Gould's Belt Survey (PI: Ph. André)

Herschel data

Herschel detections in Lupus

IDSW - 2013

Parameters	Sz 91	Sz 111
RA	16:07:11.59	16:08:54.69
Dec	-39:03:47.54	-39:37:43.11
Sp Type	M 1.0	M 1.5
Temperature (K)	3785	3650
Mass (M _*)	0,75	0,66

Physical interpretation

Sz 91

Sz 111

Ancillary Data - Optical, 2Mass, WISE, Spitzer

New Herschel Data - PACS, SPIRE

Physical interpretation

Sz 111

Disk models

Parameters	Values sampled by grid	Sz 91	Sz 111
$\mathbf{M}_{ ext{dust}}$ (\mathbf{M}_{*})	[0.001 - 0.009]	undetermined	undetermined
R _{in} (AU)	[20 - 100]	[40 - 80]	[35 - 60]
R _{out} (AU)	[25 - 100]	[< 70]	[40 - 70]
Surface density profile	[-0.51.75]	undetermined	undetermined
Inclination (^o)	[0 - 90]	undetermined	undetermined
**			

Hyperion - radiative dust transfer code – Robitaille et al. (2011)

Disk models

Parameters	Values sampled by grid	Sz 91	Sz 111
$\mathbf{M}_{\mathrm{dust}}$ (\mathbf{M}_{*})	[0.001 - 0.009]	undetermined	undetermined
R _{in} (AU)	[20 - 100]	[40 - 80]	[35 - 60]
R _{out} (AU)	[25 - 100]	[< 70]	[40 - 70]
Surface density profile	[-0 51 75]	undetermined	undetermined
Inclination (^o)	Two parameters c	mined	undetermined
тт	• • • • • •		\

Hyperion - radiative dust transfer code – Robitaille et al. (2011)

Constraining the outer disk

IDSW - 2013

Hyperion - radiative dust transfer code – Robitaille et al. (2011)

Constraining the outer disk

IDSW - 2013

Hyperion - radiative dust transfer code - Robitaille et al. (2011)

Overall interpretation of the system

IDSW - 2013

Overall interpretation of the system

IDSW - 2013

Facts

Large inner holes Small outer disk (Sz 111)

Overall interpretation of the system

IDSW - 2013

Facts

Large inner holes Small outer disk (Sz 111)

Gas accretion to the star (Hughes et al., 1994)

Ongoing formation of giant planets

olanetary disk around J 1604 essrelease/2013/02/07/index.html

Conclusions and Future Work

Results

- Transitional disk detection method tested
- Two objects confirmed in Lupus cloud Sz 91 and Sz 111
- SED modelling allows to constrain sizes of circumstellar disks \rightarrow they present **large** inner holes and, in one case, narrow outer rings
- Large inner holes and accretion to the stars hint at **ongoing giant planet formation** on these systems

Future work

- Finalize analysis
- Submit A&A letter

- ALMA follow-up observation and preparation to JWST