Sources of Electron Pitch Angle Anisotropy in the Magnetotail Plasma Sheet

A.P. Walsh¹, A.N. Fazakerley², C. Forsyth², C.J. Owen², M.G.G.G.G.T.T.T. Taylor¹, I.J. Rae²

ESA/ESTEC
UCL-MSSL

IDSW, Aranjuez, 21 November 2013

The Magnetotail Plasma Sheet

The Magnetotail Plasma Sheet

The Magnetosphere

Ring Current

Ring Current

Radiation Belts

Images: UCL, NASA

Ring Current

Radiation Belts

Images: UCL, NASA

 Pitch angle tells us how a particle is moving with respect to the local magnetic field.

> 0 = parallel 90 = perpendicular 180 = antiparallel

- Different physical processes produce particles with different pitch angles.
- Comparing the flux of particles with different pitch angles we can learn about the processes that have acted on them.

Pitch Angle

Plasma Sheet Electron Pitch Angle Distributions

- Are the electrons in the plasma sheet really isotropic?
- Survey of Cluster data.
- ~10⁶ electron spectra.
- Examine average electron flux at different pitch angles as a function of distance from the centre of the plasma sheet.
- Examine ratio between average field-aligned flux and average perpendicular flux.

Electron Anisotropy

What is the source of the anisotropy?

- There is, on average, an excess flux of fieldaligned electrons at sub-KeV energies.
- Is it simply an aliasing effect?
 - Is the electron plasma sheet sometimes colder and more strongly field-aligned?
 - Is it sometimes hotter and more isotropic?
 - Is this controlled by IMF BZ?
- Are there two coexisting components of plasma sheet electrons, similar to the two component proton plasma sheet?
 - If so, what are the sources of these components?

Northward vs Southward IMF

Southward IMF

Northward IMF

The Kappa Distribution

- Widely used in space plasmas in place of a Maxwellian.
- Models the suprathermal tails of observed particle distributions.
- Can simply sum *n* kappa functions with different parameters to represent an *n* component distribution.

$$-A_{h}E\frac{\Gamma(\kappa_{h}+1)}{\Gamma(\kappa_{h}-\frac{1}{2})}\left(1+\frac{E}{\kappa_{h}E_{0h}}\right)^{-\kappa_{h}-1}$$

An Ionospheric Source?

(Adapted from Forsyth et al., 2012)

- Using an empirical magnetic field model (Tsyganenko et al., 1989) we can estimate the location in the ionosphere magnetically conjugate to the Cluster spacecraft at any given time.
- We can then determine if there's a pattern to the locations in the ionosphere conjugate to where the cold electrons are most often observed.

An Ionospheric Source?

An Ionospheric Source?

Electrons are pulled from the ionosphere into the magnetosphere by the downward Birkeland currents that connect the two regimes.

Conclusions

- The electron plasma sheet is not isotropic as commonly thought.
- The anisotropy is driven by the presence of an additional cold component of electrons.
- Evidence suggests that the cold electrons come from the ionosphere and are transported via field aligned currents.
- This has been postulated in the past and seen in case studies (e.g. Kletzing & Scudder, 1999; Wright et al., 2008), but we've shown it is persistent and significant.
- Walsh et al., GRL, 2011; Walsh et al., JGR, 2013