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Abstract
Transient phenomena are interesting and potentially highly
revealing of details that could otherwise go unnoticed. It is
therefore important to maximize the sensitivity of the method
used to identify such events. We present a general procedure
based on the use of the likelihood function for identifying
transients that is particularly suited for real-time applications,
because it requires no grouping or pre-processing of the data.
The method makes use of all the information that is available
in the data throughout the statistical decision making process,
and is suitable for a wide range of applications. We consider
those most common in astrophysics which involve working
with images, time series, energy spectra, and power spectra,
and demonstrate the use of the method in the case of a weak
X-ray flare in a time series and a short-lived QPO in a power
spectrum. (Work published in Belanger 2013, ApJ, 773, 66)

Detection and Identification
The detection of any kind of transient involves identifying
something that was not there before. All transient phenomena
share in common, independently of their particular time scale,
that they appear and fade away.

The process of detection and identification of a transient fea-
ture in a set of measurements is a statistical procedure that
involves comparing numbers and making decisions based on
the probability ratios, and in other words, on likelihoods,
which measure statistical evidence. We always want to max-
imise sensitivity to transients and minimise the frequency of
false detections. Therefore, we must use all the information
that is available, and interpret the data as statistical evidence.

A transient is identified in relation to background conditions.
The background process can be constant or it can be variable.
Our basic working assumption here is that we are dealing with
cases where the background is constant on the time scales that
are relevant to the problem of identifying transients, whether
it is nil or not.

A Unified Approach
The method is straight forward and is based on the use of the
likelihood function. All details pertaining to the inherent sta-
tistical properties of the observed random variable (e.g., nor-
mal, Poisson, exponential) are automatically taken into ac-
count and integrated in every aspect of the procedure, which
makes use of each measurement and does not require any kind
of grouping or approximations. The approach is unified be-
cause it treats in the same manner the detection of transients
in any domain (time, space, frequency, etc).

The very first measurement gives the first estimate of the ref-
erence value: the value we expect to measure under usual con-
ditions when there are no transients. With this we draw the
curve that expresses the likelihood of all possible reference
values given the evidence from that measurement informed
by the probability distribution of the measured variable (Fig
1, panel a). Most common are the normal seen in continuous
processes, and the Poisson when counting events.

Figure 1. Graphical representation of the single-measurement and joint like-
lihood functions after 1 (panel (a)), 2 (panel (b)), 7 (panel (c)) and 19 (panel
(d)) measurements of a Poisson variable with a true rate parameter of ν = 5.
The 1/8 likelihood interval is shown in panel (d).

The second measurement gives a second estimate of the refer-
ence value. It is evaluated for its potential of being a transient
by computing its likelihood ratio with respect to the previous
ML. This is the only mathematically correct way to evaluate
the likelihood of measuring that second value in light of the
first. If it is not statistically different from the first beyond the
established threshold, they are combined to better estimate
the reference. The joint likelihood function is computed from
the two measurements, and immediately begins to grow nar-
rower (Fig 1, panel b).

With the third and each subsequent measurement the proce-
dure is: 1) compute the likelihood of the newly measured val-
ue based on the single-measurement function defined by the
current ML reference; 2) if the likelihood is less than the de-

fined threshold, issue a transient event warning. Do not up-
date the reference; 3) if the likelihood is within the likeli-
hood interval (Fig 1, panel d), recalculate the joint likelihood
function including the new measurement and update the ref-
erence.

The joint likelihood is the likelihood function of the refer-
ence value given the entire set of measurements, and with
each additional measurement, it gets narrower and more fine-
ly peaked on the ML reference value; the single-measurement
likelihood is the function that shows how likely it is to mea-
sure any given value each time a measurement is made. The
better the reference value, the more reliable the location of the
single-measurement likelihood function. However, its shape
depends only on the probability density of the random vari-
able and on the reference value. The single or multiple thresh-
olds used to identify the occurrence of a transient event must
be defined and optimised according to the application.

X-ray Transient in Time Series
We are observing a hypothetical bursting X-ray source em-
bedded in a region from which the average event rate is 1
s-1. The observation lasts 1 hour, and in it occurs a weak
burst lasting about 30 s, and from which 33 events are de-
tected. Even though a hint of its presence is seen in the 30 s
binned time series, (but not really with 60 s bins), this event
could easily have gone unnoticed if the detection relied on
the examination of similar time series. With the procedure
described above, the burst is detected at a log-likelihood of
-48.41 (likelihood of 10-21).

Figure 2. Time series of the observation shown in counts per bin for 30 and
60 s bins (left panel, bottom and top, respectively). Instantaneous count rate
calculated as the inverse of the time between events shown as a function of
each event’s arrival time above the transient detection likelihood also evalu-
ated in real time. The maximum value of the instantaneous rate is 2950 s−1,
but the scale was truncated to 86 s−1 to match the scale of the 60 s time series
and better show the scatter. Values of the log-likelihood that do not meet the
trigger criterion are shown at the warning threshold level of −2.1 (likelihood
of 0.14). The sole detection is that of the transient event, and it dips down to
−48.41 (likelihood of 10−21).

This is the combined likelihood of detecting at least eight
consecutive events, each of which met the warning threshold
of log-likelihood -2.1, when expecting the average detection
rate. In contrast, looking at the peak that stands out in the 30
s binned time series, we would compare a total intensity of
53 events against the expectation of 30, and find a likelihood
of 5.8×10−4 , which might be enough to make us raise an eye-
brow, but not much more.

The strategy was established using simulations: observations
that did not include a burst gave rise to false transients less
than 10% of the time, but that the when a burst was included
it was detected 60% of the time. For the purpose of detect-
ing strong but extremely short-lived transients, it would bet-
ter to use a very low, single-point threshold. Each application
has its own optimal settings that can be precisely tuned using
simulations.

Transient QPO in X-ray Binary
We are now observing in X-rays of a bright (500 s-1) accret-
ing system whose emission comes from two components: the
accretion disk and the hot inner flow. The emission process-
es give rise to red noise with different spectral indexes. The
accretion disk is much larger in extent and has a sharp inner
radius. It dominates at lower frequencies with a power-law
index of -1, and has a high-frequency cutoff beyond which
it does not contribute to the power spectrum. The turbulent
inner flow is much smaller in extent because it is bounded
by the inner edge of the disk. Its emission is more variable
and dominates the high-frequency part of the spectrum with
a power-law index of -3.

We are interested in monitoring the range of frequencies be-
tween 0.1 and 10 Hz for the appearance of a weak, short-
lived, transient QPO that we expect to appear at or very near
the break in the power spectrum at 1 Hz that marks the bound-
ary between the disk and the turbulent inner flow. We make a
periodogram every 10 seconds with the events accumulated

during this time interval, and monitor the power at one or any
number of frequencies. For a short-lived QPO, we cannot rely
on the transient persisting in more than one "measurement",
and therefore we must establish a single detection threshold
using simulations. In this case, log-likelihood of -10.1 (likeli-
hood of 4x10-5), ensures a low level of false detections (5%).

Figure 3. The top row shows the time series of the entire observation (binned
to a resolution of 5 s for clarity of presentation); the periodogram made from
the Kalman filtered, 0.05 s time series of the arrival times; and the power at 1
Hz estimated at 10 s intervals as a function of time. The bottom row shows a
zoom on the time series during the transient QPO from its start at 485 s until
its end at 515 s after the beginning of the observation; the periodogram of
the Kalman-filtered 0.05 s resolution time series; and the log-likelihood as a
function of time where only detections beyond the established threshold are
shown. The QPO is characterised by 30 cycles of an almost periodic signal
centred on 1 Hz with a standard deviation of 1/20 about that frequency and
a pulsed fraction of 27%.

Concluding Remarks
Treating and interpreting data as statistical evidence in seek-
ing to further our understanding of physical processes and of
the behavior of complex systems such as those we observe in
astrophysics, using all the information carried by these data,
is most directly done through the use of the likelihood func-
tion, appropriately chosen according to the measured random
variable.

The procedure presented is well suited to handle the first
two classes of transients with constant background. It is ob-
vious that identification efficiency depends intimately on the
strength of the transient signal. The approach is perfectly well
suited for analysing archival data, but especially powerful for
real-time applications.

If the process is variable but predictable, then this is an ex-
tension of the procedure using a model, but in which it it-
self evolves as a function of time. The formalism is other-
wise identical. If the process is variable and unpredictable,
it implies that the measurements in each pixel or channel
are not distributed according to a fixed probability distribu-
tion. Therefore, each pixel or channel is treated individual-
ly, but because we have no a priori expression for the likeli-
hood function, the intensity and how it is distributed is char-
acterised by the running mean and variance.

For highly variable processes, where deviations in shape from
known probability distributions are large, looking at the dis-
tribution of measured values is not really useful, because the
changing intensity in each cannot be described by random
variables with stationary probability distributions. However,
a variable process can be highly non-stationary in the time
domain but stationary in frequency space. This is analogous
to a variable point source whose intensity varies markedly in
successive images but whose location in the sky remains the
same, and whose shape as it appears in each image is as al-
ways given by the PSF.

Combining the information carried by the data in the time
and frequency domains, and treating it simultaneously in the
fashion described in this paper is a most powerful means for
detecting transient features in highly variable processes. A
detailed investigation of how to best characterise such pro-
cesses, be it for identifying transients or for some other pur-
pose, will be addressed elsewhere.
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